Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Pharm Res ; 40(2): 551-566, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36670330

RESUMO

INTRODUCTION: COX-2 inhibition in pro-tumoral M2 polarization of Tumor-Associated Macrophages (TAMs) underscore the improved prognosis and response to cancer therapy. Thus, etoricoxib, a COX-2 inhibiting NSAID drug is highly effective against tumorigenesis, but its compromised solubility and associated hepatotoxicity, and cardiotoxicity limit its clinical translation. OBJECTIVE: In view of the consequences, the proposed study entails the development of a liposomal formulation for etoricoxib and evaluates its anticancer potential. METHODS AND RESULT: Etoricoxib loaded liposome was prepared by thin layer hydration method and characterized as a nearly monodisperse system with particle size (91.64 nm), zeta potential (-44.5 mV), drug loading (17.22%), and entrapment efficiency (94.76%). The developed formulation was administered subcutaneously into the orthotopic 4T1/Balb/c mice model. Its treatment significantly reduced tumor size and skewed M2 polarization of TAMs to a greater extent against free etoricoxib. Furthermore, Tumor tissues analyzed through immunoblotting study confirmed the reduction in Akt phosphorylation at Thr308 residue and pro-tumoral VEGF, MMP-9, and MMP-2 proteins; Moreover, histology studies and microCT analysis of bones revealed the enhanced anti-metastatic potential of etoricoxib delivered through developed formulation against free etoricoxib. CONCLUSION: As an epilogue, the developed formulation efficiently delivers poorly soluble etoricoxib, enhances its therapeutic potential as an anti-tumor and anti-metastatic agent, and directs explorative research for clinical translation.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Lipossomos , Animais , Camundongos , Ciclo-Oxigenase 2 , Etoricoxib , Lipossomos/química , Macrófagos Associados a Tumor , Camundongos Endogâmicos BALB C
2.
Cancer Med ; 11(9): 1937-1947, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274800

RESUMO

PURPOSE: Cancer stem cells (CSCs) constitute a distinctive subpopulation of cancer cells that are competent in tumor initiation, invasion, recurrence, and resistance to chemoradiotherapy. CD44, a hyaluronic acid (HA) receptor has been considered as a potential CSC marker in head and neck cancer. The purpose of this study is to evaluate the correlation between CD44 and clinicopathological parameters, treatment response, survival, and recurrence. METHODS: The CD44 expression was examined by immunohistochemistry (IHC) in 90 samples of head and neck squamous cell carcinoma (HNSCC) confirmed patients. The expression of CD44 and its association with clinicopathological parameters, treatment response, and survival was determined. RESULTS: In all HNSCC patient samples, CD44 was expressed consistently at different intensities. Tumor size (p < 0.001), stage (p < 0.001), and treatment response (p < 0.001) showed statistically significant association with CD44 expression. Alcohol and CD44 were observed as independent predictors of response to radiotherapy using multivariate ordinal logistic regression analysis. Analysis of 2-year overall survival (OS) showed that CD44 expression (p = 0.02), tumor size (p = 0.001), lymph node status (p < 0.001), stage (p < 0.001), and grade (p = 0.007) were significantly associated with OS. Using Cox regression analysis, lymph node status (p = 0.001), grade (p < 0.001), recurrence (p < 0.001), and CD44 expression (p = 0.003) were found to be potential independent predictors of OS. CONCLUSION: Our findings suggest that CD44 contributes to resistance to radiotherapy and poor OS. The results also suggest that except for CD44 there could be other factors such as lymph node metastasis, grade, and alcohol which should be investigated as potential targets for therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Receptores de Hialuronatos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Taxa de Sobrevida
3.
Regul Toxicol Pharmacol ; 123: 104960, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34022260

RESUMO

Cassia occidentalis Linn (CO) is an annual/perennial plant having traditional uses in the treatments of ringworm, gastrointestinal ailments and piles, bone fracture, and wound healing. Previously, we confirmed the medicinal use of the stem extract (ethanolic) of CO (henceforth CSE) in fracture healing at 250 mg/kg dose in rats and described an osteogenic mode of action of four phytochemicals present in CSE. Here we studied CSE's preclinical safety and toxicity. CSE prepared as per regulations of Current Good Manufacturing Practice for human pharmaceuticals/phytopharmaceuticals and all studies were performed in rodents in a GLP-accredited facility. In acute dose toxicity as per New Drug and Clinical Trial Rules, 2019 (prior name schedule Y), in rats and mice and ten-day dose range-finding study in rats, CSE showed no mortality and no gross abnormality at 2500 mg/kg dose. Safety Pharmacology showed no adverse effect on central nervous system, cardiovascular system, and respiratory system at 2500 mg/kg dose. CSE was not mutagenic in the Ames test and did not cause clastogenicity assessed by in vivo bone marrow genotoxicity assay. By a sub chronic (90 days) repeated dose (as per OECD, 408 guideline) study in rats, the no-observed-adverse-effect-level was found to be 2500 mg/kg assessed by clinico-biochemistry and all organs histopathology. We conclude that CSE is safe up to 10X the dose required for its osteogenic effect.


Assuntos
Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Senna , Animais , Etanol , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Roedores , Testes de Toxicidade
4.
Org Biomol Chem ; 19(19): 4352-4358, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908567

RESUMO

A simple and straightforward process for the synthesis of rapamycin peptide conjugates in a regio and chemoselective manner was developed. The methodology comprises the tagging of chemoselective functionalities to rapamycin and peptides which enables the conjugation of free peptides, without protecting the functionality of the side chain amino acids, in high yield and purity. From this methodology, we successfully conjugate free peptides containing up to 15 amino acids. Rapamycin is also conjugated to the peptides known for inhibiting the kinase activity of Akt protein. These conjugates act as dual target inhibitors and inhibit the kinase activity of both mTOR and Akt.


Assuntos
Sirolimo
5.
Tuberculosis (Edinb) ; 128: 102081, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33915379

RESUMO

We investigated the preclinical efficacy and safety/tolerability of biodegradable polymeric particles containing isoniazid (INH) and rifabutin (RFB) dry powder for inhalation (DPI) as an adjunct to oral first-line therapy. Mice and guinea pigs infected with Mycobacterium tuberculosis H37Rv (Mtb) were treated with ∼80 and ∼300 µg of the DPI, respectively, for 3-4 weeks starting 3, 10, and 30 days post-infection. Adjunct combination therapy eliminated culturable Mtb from the lungs and spleens of all but one of 52 animals that received the DPI. Relapse-free cure was not achieved in one mouse that received DPI + oral, human-equivalent doses (HED) of four drugs used in the Directly Observed Treatment, Short Course (DOTS), starting 30 days post-infection. Oral doses (20 mg/Kg/day, each) of INH + RFB reduced Mtb burden from ∼106 to ∼103 colony-forming units. Combining half the oral dose with DPI prevented relapse of infection four weeks after stopping the treatment. The DPI was safe in rodents, guinea pigs, and monkeys at 1, 10, and 100 µg/day doses over 90 days. In conclusion, we show the efficacy and safety/tolerability of the DPI as an adjunct to oral chemotherapy in three different animal models of TB.


Assuntos
Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Rifabutina/uso terapêutico , Tuberculose/tratamento farmacológico , Administração por Inalação , Animais , Quimioterapia Combinada , Feminino , Cobaias , Isoniazida/administração & dosagem , Macaca mulatta , Masculino , Camundongos , Mycobacterium tuberculosis , Recidiva , Rifabutina/administração & dosagem
6.
PLoS One ; 14(12): e0226872, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856246

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0069086.].

7.
BMC Cancer ; 19(1): 1236, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856761

RESUMO

BACKGROUND: The mechanistic (or mammalian) target of rapamycin (mTOR), a Ser/Thr kinase, associates with different subunits forming two functionally distinct complexes, mTORC1 and mTORC2, regulating a diverse set of cellular functions in response to growth factors, cellular energy levels, and nutrients. The mechanisms regulating mTORC1 activity are well characterized; regulation of mTORC2 activity, however, remains obscure. While studies conducted in Dictyostelium suggest a possible role of Ras protein as a potential upstream regulator of mTORC2, definitive studies delineating the underlying molecular mechanisms, particularly in mammalian cells, are still lacking. METHODS: Protein levels were measured by Western blotting and kinase activity of mTORC2 was analyzed by in vitro kinase assay. In situ Proximity ligation assay (PLA) and co-immunoprecipitation assay was performed to detect protein-protein interaction. Protein localization was investigated by immunofluorescence and subcellular fractionation while cellular function of mTORC2 was assessed by assaying extent of cell migration and invasion. RESULTS: Here, we present experimental evidence in support of the role of Ras activation as an upstream regulatory switch governing mTORC2 signaling in mammalian cancer cells. We report that active Ras through its interaction with mSIN1 accounts for mTORC2 activation, while disruption of this interaction by genetic means or via peptide-based competitive hindrance, impedes mTORC2 signaling. CONCLUSIONS: Our study defines the regulatory role played by Ras during mTORC2 signaling in mammalian cells and highlights the importance of Ras-mSIN1 interaction in the assembly of functionally intact mTORC2.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Lipoma/genética , Lipoma/metabolismo , Lipoma/patologia , Células MCF-7 , Mutação , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Transdução de Sinais , Superóxidos/metabolismo , Regulação para Cima , Proteínas ras/genética
8.
Cytokine ; 118: 130-143, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625858

RESUMO

Oncostatin M (OSM), an inflammatory cytokine belonging to the interleukin-6 (IL-6) superfamily, plays a vital role in multitude of physiological and pathological processes. Its role in breast tumor progression and metastasis to distant organs is well documented. Recent reports implicate OSM in macrophage M2 polarization, a key pro-tumoral phenomenon. M2 polarization of macrophages is believed to promote tumor progression by potentiating metastasis and angiogenesis. In the current study, we delineated the mechanism underlying OSM induced macrophage M2 polarization. The findings revealed that OSM skews macrophages towards an M2 polarized phenotype via mTOR signaling complex 2 (mTORC2). mTORC2 relays signals through two effector kinases i.e. PKC-α and Akt. Our results indicated that mTORC2 mediated M2 polarization of macrophages is not dependent on PKC-α and is primarily affected via Akt, particularly Akt1. In vivo studies conducted on 4T1/BALB/c mouse orthotropic model of breast cancer further corroborated these observations wherein i.v. reintroduction of mTORC2 abrogated monocytes into orthotropic mouse model resulted in diminished acquisition of M2 specific attributes by tumor associated macrophages. Metastasis to distant organs like lung, liver and bone was reduced as evident by decrease in formation of focal metastatic lesions in mTORC2 abrogated monocytes mice. Our study pinpoints key role of mTORC2-Akt1 axis in OSM induced macrophage polarization and suggests for possible usage of Oncostatin-M blockade and/or selective mTORC2 inhibition as a potential anti-cancer strategy particularly with reference to metastasis of breast cancer to distant organs such as lung, liver and bone.


Assuntos
Proliferação de Células/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Metástase Neoplásica/tratamento farmacológico , Oncostatina M/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-6/metabolismo , Células MCF-7 , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Metástase Neoplásica/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1
9.
Life Sci ; 214: 158-166, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391463

RESUMO

AIMS: Human immunodeficiency virus -1 [HIV-1] Nef, localizes in different cellular compartments and modulates several cellular pathways. Nef promotes virus pathogenicity through alteration in cell surface receptor expression, apoptosis, protein trafficking etc. Nef regulates viral pathogenesis through interaction with different host proteins. Thus, molecular mechanisms of pathogenesis could be deciphered by identifying novel Nef interacting proteins. MAIN METHODS: HIV-1 Nef interacting proteins were identified by pull down assay and MALDI-TOF analysis. The interaction was further validated through mammalian two hybrid assay. Functional role of this interaction was identified by immunoprecipitation assay, cell invasion and cell migration studies. Fold Change in mRNA levels of CD163, CD206, CCL17 and CCL18 was analyzed using qPCR. KEY FINDINGS: In current study, C. elegans protein ACT4C and its human homolog POTEE was identified to be interacting with Nef. This interaction activates mTORC2 complex, which in-turn activates AKT and PKC-α. The activation of mTORC2 complex was found to be initiated by the interaction of Nef, mTORC2, Rictor to POTEE. The cellular phenotype and functions affected by Nef-POTEE interaction resulted in significant increase in cell invasion and migration of macrophages (MΦ). SIGNIFICANCE: MΦ is primary target of HIV-1 infection where HIV-1 replicates and polarizes immunosuppressive M2 phenotype. Combine effect of M2 phenotype and Viral-host protein interactions compromise the MΦ associated physiological functions. Infected MΦ dissemination into other system also leads to HIV-1 induced malignancies. Therefore, targeting POTEE-Nef interaction can lead to formulating better therapeutic strategy against HIV-1.


Assuntos
Antígenos de Neoplasias/metabolismo , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos de Neoplasias/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células HEK293 , Humanos , Macrófagos/virologia , Fosforilação , Proteína Quinase C-alfa/metabolismo , Serina/metabolismo , Transdução de Sinais , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
10.
Biochem Biophys Res Commun ; 503(2): 677-683, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29908185

RESUMO

Breast cancer is most frequently diagnosed cancer and fifth leading cause of death in women. About 20-30% of all breast cancers overexpress HER2/neu receptors. Lapatinib is a dual tyrosin kinase inhibitor of EGFR and HER2. It exhibits its anticancer effect via blocking intracellular domain of HER2 receptor in breast cancer. Lapatinib belongs to class II of BSC classification due to its poor solubility restricting its clinical application. Due to presence of HER2 receptor on cardiomyocytes, it is associated with generation of cardiotoxicity. The present study was aimed to design a PEGylated liposomal formulation of Lapatinib and evaluate its anticancer potential. Lapatinib liposomes were prepared using lipid layer hydration method and its characterization was done by determining its particle size, zeta potential, entrapment efficiency and in vitro release profiling. The anti-tumor activity of PEGylated liposomal formulation was evaluated in xenografted tumor induced by MDA-MB-453 breast cancer cells in chick embryos. The anti-tumor effect of lapatinib was enhanced by its PEGylated liposomal preparation as it led to the reduction in tumor size to a greater extent compared to the embryos treated with free lapatinib. Flowcytometric analysis and immunoflurescence study using cleaved PARP antibody demonstrated the enhanced apoptotic potential of PEGylated liposomes of lapatinib. SGOT levels, marker for cardiotoxicity and hepatotoxicity, significantly decreased in serum of embryos treated with PEGylated liposomes of lapatinib compared to free drug treated embryos. Hence, the PEGylated liposomal formulation of lapatinib can be used as a therapeutic strategy against HER2 positive breast cancer either alone or in combination with conventional anticancer agents and hormonal therapies.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Lapatinib/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Lapatinib/toxicidade , Lipossomos/química , Polietilenoglicóis/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/toxicidade , Receptor ErbB-2/metabolismo
11.
Life Sci ; 194: 59-66, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246543

RESUMO

AIMS: HIF is an important transcription-regulator for adaptation to cellular stress in cells of myeloid origin. Classically, expression and activity of HIF1-α is regulated by oxygen-concentration within cell. However, there exists an alternative regulatory mechanism affecting HIF1-α levels independent of oxygen concentration particularly in inflammatory cells like macrophages. Here we report the mechanism of HIF1-α upregulation in TAMs by Oncostatin-M (OSM) independent of cellular oxygen concentration. MAIN METHODS: THP-1 derived macrophages were treated with OSM. HIF1-α levels and interaction with pVHL were evaluated via immunoblot-analysis and Co-immunoprecipitation. Translocation of HIF1-α to nucleus was visualized using confocal-microscopy. Fold change in mRNA levels of ARG-1 and COX-2 was analyzed using RT-PCR. KEY FINDINGS: Current study demonstrates that OSM treatment to TAMs led to an increased expression of HIF1-α under normoxic conditions via activation of mTORC2. This HIF1-α upregulation was dependent on both de novo synthesis of HIF1-α and its enhanced stability due to disruption of its binding to pVHL. Furthermore, we evaluated that OSM not only enhances the expression of HIF1-α but also increases its localization to nucleus where it acts as a transcription factor regulating expression of genes like ARG-1 and COX-2. SIGNIFICANCE: Inflammation is a critical hallmark of cancer as tumor microenvironment is largely infiltrated with macrophages. These tumor associated macrophages (TAMs) display a M2 skewed phenotype. Many target genes of TAMs are HIF1-α responsive. These TAMs are involved in tumor progression, metastasis and angiogenesis. Targeting of HIF1-α/OSM can lead to devising of better therapeutic strategy against cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/efeitos dos fármacos , Oncostatina M/farmacologia , Oxigênio/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Macrófagos/metabolismo , Macrófagos/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Microambiente Tumoral/efeitos dos fármacos
12.
J Control Release ; 254: 92-106, 2017 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28377038

RESUMO

Recruitment of inflammatory cells to tumor has been well documented, with the most frequent inhabitants being macrophages termed as tumor associated macrophages, (TAMs). Their presence was thought to be an evidence of immune system initiating a fight response towards the tumor, i.e. immune surveillance. This is the case too initially, when TAMs majorly exhibit an M1 phenotype, but their continued presence in tumor microenvironment brings about their polarization to M2 phenotype, which not only participate in continued sustenance of existing tumor but also open up deleterious avenues for further progression and metastasis of cancer. Current perspective is built around this very premise and focuses specifically on TAMs and how they are being targeted by researchers working in annals of nanomedicine. To do so, we dwell into tumor microenvironment and focus on nanotechnology based drug delivery aspects which have either been already or can be potentially employed in the future to target tumor associated macrophages for improved immunoadjuvant therapy of cancer.


Assuntos
Macrófagos/imunologia , Nanocápsulas/química , Neoplasias/terapia , Adjuvantes Imunológicos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Portadores de Fármacos , Humanos , Imunoterapia , Macrófagos/metabolismo , Terapia de Alvo Molecular/métodos , Nanoestruturas , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Microambiente Tumoral/fisiologia
13.
Nat Biotechnol ; 34(10): 1046-1051, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27598229

RESUMO

Whitefly (Bemisia tabaci) damages field crops by sucking sap and transmitting viral diseases. None of the insecticidal proteins used in genetically modified (GM) crop plants to date are effective against whitefly. We report the identification of a protein (Tma12) from an edible fern, Tectaria macrodonta (Fee) C. Chr., that is insecticidal to whitefly (median lethal concentration = 1.49 µg/ml in in vitro feeding assays) and interferes with its life cycle at sublethal doses. Transgenic cotton lines that express Tma12 at ∼0.01% of total soluble leaf protein were resistant to whitefly infestation in contained field trials, with no detectable yield penalty. The transgenic cotton lines were also protected from whitefly-borne cotton leaf curl viral disease. Rats fed Tma12 showed no detectable histological or biochemical changes, and this, together with the predicted absence of allergenic domains in Tma12, indicates that Tma12 might be well suited for deployment in GM crops to control whitefly and the viruses it carries.


Assuntos
Gleiquênias/metabolismo , Gossypium/genética , Gossypium/parasitologia , Hemípteros/virologia , Inseticidas/metabolismo , Proteínas de Plantas/metabolismo , Animais , Gleiquênias/genética , Melhoramento Genético/métodos , Gossypium/virologia , Hemípteros/patogenicidade , Proteínas de Plantas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Oncoimmunology ; 5(7): e1196299, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622050

RESUMO

The potential of a tumor cell to metastasize profoundly depends on its microenvironment, or "niche" interactions with local components. Tumor-associated-macrophages (TAMs) are the most abundant subpopulation of tumor stroma and represent a key component of tumor microenvironment. The dynamic interaction of cancer cells with neighboring TAMs actively drive cancer progression and metastatic transformation through intercellular signaling networks that need better elucidation. Thus, current study was planned for discerning paracrine communication networks operational between TAMs, and breast cancer cells with special reference to cancer cell invasion and dissemination to distant sites. Here, we report role of MIP-1ß in enhancing invasive potential of metastatic breast cancer MDA-MB-231 and MDA-MB-468 cells. In addition, the poorly metastatic MCF-7 cells were also rendered invasive by MIP-1ß. The MIP-1ß-driven cancer cell invasion was dependent on upregulated expression levels of MYO3A gene, which encodes an unconventional myosin super-family protein harboring a kinase domain. Ex ovo study employing Chick-embryo-model and in vivo Syngenic 4T1/BALB/c mice-model further corroborated aforementioned in vitro findings, thereby substantiating their physiological relevance. Concordantly, human breast cancer specimen exhibited significant association between mRNA expression levels of MIP-1ß and MYO3A. Both, MIP-1ß and MYO3A exhibited positive correlation with MMP9, an established molecular determinant of cancer cell invasion. Higher expression of these genes correlated with poor survival of breast cancer patients. Collectively, these results point toward so far undisclosed MIP-1ß/MYO3A axis being operational during metastasis, wherein macrophage-derived MIP-1ß potentiated cancer cell invasion and metastasis via up regulation of MYO3A gene within cancer cells. Our study exposes opportunities for devising potential anti-metastatic strategies for efficient clinical management of breast cancer.

15.
Toxicol Appl Pharmacol ; 295: 12-25, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851681

RESUMO

The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8 weeks) bone loss. At 8 weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8 weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Osteoblastos/metabolismo , Teofilina/farmacologia , Vitamina D/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Medula Óssea/metabolismo , Regeneração Óssea/efeitos dos fármacos , Calcifediol/metabolismo , Técnicas de Cultura de Células , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fraturas Ósseas/fisiopatologia , Masculino , Metilprednisolona/farmacologia , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Teofilina/farmacocinética , Fatores de Tempo
16.
Oncotarget ; 5(14): 5350-68, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25051364

RESUMO

TAMs, a unique and distinct M2-skewed myeloid population of tumor stroma, exhibiting pro-tumor functions is fast emerging as a potential target for anti-cancer immunotherapy. Macrophage-recruitment and M2-polarization represent key TAMs-related phenomenon that are amenable to therapeutic intervention. However successful translation of these approaches into effective therapeutic regimen requires better characterization of tumor-microenvironment derived signals that regulate macrophage recruitment and their polarization. Owing to hypoxic milieu being a persistent feature of tumor-microenvironment and a major contributor to malignancy and treatment resistance, the current study was planned with an aim to decipher tumor cell responses to hypoxia vis-a-vis macrophage homing and phenotype switching. Here, we show that hypoxia-primed cancer cells chemoattract and polarize macrophages to pro-angiogenic M2-polarized subtype via Eotaxin and Oncostatin M. Concordantly, hypoxic regions of human breast-cancer specimen exhibited elevated Eotaxin and Oncostatin M levels with concurrently elevated M2-macrophage content. Blockade of Eotaxin/Oncostatin M not only prevented hypoxic breast-cancer cells from recruiting and polarizing macrophages towards an M2-polarized phenotype and retarded tumor progression in 4T1/BALB/c-syngenic-mice-model of breast-cancer but also enhanced the efficacy of anti-angiogenic Bevacizumab. The findings established these two cytokines as novel targets for devising effective anticancer therapy particularly for tumors that are refractory or develop resistance to anti-angiogenic therapeutics.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Quimiocina CCL11/metabolismo , Macrófagos/patologia , Oncostatina M/metabolismo , Animais , Neoplasias da Mama/patologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fenótipo , Distribuição Aleatória , Microambiente Tumoral
17.
Toxicol Sci ; 139(1): 257-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24496638

RESUMO

Dithiocarbamates (DTC), a sulfhydryl group containing compounds, are extensively used by humans that include metam and thiram due to their pesticide properties, and disulfiram (DSF) as an alcohol deterrent. We screened these DTC in an osteoblast viability assay. DSF exhibited the highest cytotoxicity (IC50 488nM). Loss in osteoblast viability and proliferation was due to induction of apoptosis via G1 arrest. DSF treatment to osteoblasts reduced glutathione (GSH) levels and exogenous addition of GSH prevented DSF-induced reactive oxygen species generation and osteoblast apoptosis. DSF also inhibited osteoblast differentiation in vitro and in vivo, and the effect was associated with inhibition of aldehyde dehydrogenase (ALDH) activity. Out of various ALDH isozymes, osteoblasts expressed only ALDH2 and DSF downregulated its transcript as well as activity. Alda-1, a specific activator of ALDH2, stimulated osteoblast differentiation. Subcutaneous injection of DSF over the calvarium of new born rats reduced the differentiation phenotype of calvarial osteoblasts but increased the mRNA levels of Runx-2 and osteocalcin. DSF treatment at a human-equivalent dose of 30 mg/kg p.o. to adult Sprague Dawley rats caused trabecular osteopenia and suppressed the formation of mineralized nodule by bone marrow stromal cells. Moreover, DSF diminished bone regeneration at the fracture site. In growing rats, DSF diminished growth plate height, primary and secondary spongiosa, mineralized osteoid and trabecular strength. Substantial decreased bone formation was also observed in the cortical site of these rats. We conclude that DSF has a strong osteopenia inducing effect by impairing osteoblast survival and differentiation due to the inhibition of ALDH2 function.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Doenças Ósseas Metabólicas/induzido quimicamente , Dissulfiram/toxicidade , Osteoblastos/efeitos dos fármacos , Aldeído Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Primers do DNA , Glutationa/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real
18.
Toxicol Ind Health ; 30(5): 405-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22933550

RESUMO

Trivalent chromium (Cr) is an environmental contaminant, which is extensively used in tanning industries throughout the world and causes various forms of health hazards in tannery workers. Therefore, a cross-sectional study design was used to evaluate the DNA damage and oxidative stress condition in tannery workers exposed to Cr in North India. The study population comprised 100 male tanners in the exposed group and 100 healthy males (no history of Cr exposure) in the comparable control group. Baseline characteristics including age, smoking, alcohol consumption habits and duration of exposure were recorded via interviewing the subjects. Blood Cr level (measured by atomic absorption spectrophotometry), DNA damage (measured by comet assay) and oxidative stress parameters (malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)) were estimated in both the groups. As a result of statistical analysis, exposed group showed significantly higher level of Cr (p < 0.0001), DNA damage (p < 0.0001), MDA (p < 0.0001), SOD (p < 0.05) and lower level of GSH (p < 0.001) when compared with controls. Smoking, alcohol consumption habits and age had no significant effect (p > 0.05) on DNA damage and oxidative stress parameters in both the groups. In simple and multiple correlation analysis, DNA damage and oxidative stress parameters showed significant correlation with Cr level and duration of exposure in exposed group. The findings of the present study revealed that chronic occupational exposure to trivalent Cr may cause DNA damage and oxidative stress in tannery workers.


Assuntos
Compostos de Cromo/toxicidade , Dano ao DNA/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Curtume , Adulto , Fatores Etários , Consumo de Bebidas Alcoólicas/efeitos adversos , Estudos de Casos e Controles , Compostos de Cromo/sangue , Ensaio Cometa , Estudos Transversais , Glutationa/sangue , Humanos , Índia/epidemiologia , Masculino , Malondialdeído/sangue , Fumar/efeitos adversos , Superóxido Dismutase/sangue
19.
PLoS One ; 8(7): e69086, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840907

RESUMO

Salinomycin is used as an antibiotic in animal husbandry. Its implication in cancer therapy has recently been proposed. Present study evaluated the toxic effects of Salinomycin on male reproductive system of mice. Doses of 1, 3 or 5 mg/kg of Salinomycin were administered daily for 28 days. Half of the mice were sacrificed after 24 h of the last treatment and other half were sacrificed 28 days after withdrawal of treatment. Effects of SAL on body and reproductive organ weights were studied. Histoarchitecture of testis and epididymis was evaluated along with ultrastructural changes in Leydig cells. Serum and testicular testosterone and luteinizing hormones were estimated. Superoxide dismutase, reduced glutathione, lipid peroxidation, catalase and lactate dehydrogenase activities were measured. Spermatozoa count, morphology, motility and fertility were evaluated. Expression patterns of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage proteins (CYP11A1) were assessed by Western blotting. Salinomycin treatment was lethal to few mice and retarded body growth in others with decreased weight of testes and seminal vesicles in a dose dependent manner. Seminiferous tubules in testes were disrupted and the epithelium of epididymis showed frequent occurrence of vacuolization and necrosis. Leydig cells showed hypertrophied cytoplasm with shrunken nuclei, condensed mitochondria, proliferated endoplasmic reticulum and increased number of lipid droplets. Salinomycin decreased motility and spermatozoa count with increased number of abnormal spermatozoa leading to infertility. The testosterone and luteinizing hormone levels were decreased in testis but increased in serum at higher doses. Depletion of superoxide dismutase and reduced glutathione with increased lipid peroxidation in both testis and epididymis indicated generation of oxidative stress. Suppressed expression of StAR and CYP11A1 proteins indicates inhibition of steroidogenesis. Spermatogenesis was however observed in testis 28 days after Salinomycin withdrawal. The results indicate reversible dose-dependent adverse effects of Salinomycin on male reproductive system of mice.


Assuntos
Antibacterianos/efeitos adversos , Fertilidade/efeitos dos fármacos , Piranos/efeitos adversos , Testículo/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Epididimo/efeitos dos fármacos , Epididimo/enzimologia , Epididimo/ultraestrutura , Feminino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/ultraestrutura , Hormônio Luteinizante/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/enzimologia , Testículo/ultraestrutura , Testosterona/sangue
20.
PLoS One ; 8(6): e67586, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799149

RESUMO

FasL mediated preferential apoptosis of bystander CTLs while protection of infected CD4(+)T cells remains one of the hallmarks of immune evasion during HIV infection. The property of infected host cells to evade cell-autonomous apoptosis emanates from ability of HIV-1Nef-protein to physically interact with ASK-1 and thereby inhibit its enzymatic activity. The specific domains of HIV-1Nef through which it may interact with ASK1 and thereby impair the ASK1 activity remain unidentified so far and represent a major challenge towards developing clear understanding about the dynamics of this interaction. Using mammalian two hybrid screen in association with site directed mutagenesis and competitive inhibitor peptides, we identified constituent minimal essential domain (152 DEVGEANN 159) through which HIV-1Nef interacts with ASK1 and inhibits its function. Furthermore our study also unravels a novel alternate mechanism underlying HIV-1 Nef mediated ASK1 functional modulation, wherein by potentiating the inhibitory ser(967) phosphorylation of ASK1, HIV-1Nef negatively modulated ASK1 function.


Assuntos
HIV-1/fisiologia , MAP Quinase Quinase Quinase 5/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Apoptose , Sítios de Ligação , Ligação Competitiva , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , MAP Quinase Quinase Quinase 5/metabolismo , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Técnicas do Sistema de Duplo-Híbrido , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA