Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119645, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744706

RESUMO

Herein, we describe the fabrication of green bell pepper, Capsicum annuum L. extract capped gold nanoparticles (CA-AuNPs) in aqueous medium using tetrachloroaurate (HAuCl4·3H2O) as precursor salt and sodium hydroxide (NaOH) solution as accelerator as well as pH adjuster. Formation of CA-AuNPs was verified via colour change from yellowish to ruby red with further confirmation through surface plasmon resonance (SPR) band at 519 nm using ultraviolet violet-visible (UV-Vis) spectroscopy. Other characterizations techniques include, Fourier transform infra-red (FTIR) spectroscopy, atomic force microscopy (AFM), dynamic light scattering (DLS) with Zeta-potential analysis (ZPA) and X-ray diffraction (XRD) method. The resulting AuNPs were efficaciously implemented as highly sensitive colorimetric sensor for selective detection of Fe2+ in the presence of several interfering cations including Fe3+. Importantly, the fabricated CA-AuNPs based colorimetric sensor functioned linearly in the range of 0.3-7.0 ppb Fe2+, based on increasing absorption intensity with R2 value of 0.9938 using UV-Vis spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) for Fe2+ were estimated as 0.036 and 0.12 ppb, respectively. Finally, the sensor was effectively tested for determination of Fe2+ in some locally collected real water samples.


Assuntos
Ouro , Nanopartículas Metálicas , Colorimetria , Limite de Detecção , Ressonância de Plasmônio de Superfície
2.
RSC Adv ; 11(32): 19647-19655, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479244

RESUMO

In this study we report an environmentally friendly, facile and straightforward sonochemical synthetic strategy for a Co3O4/GO nanocomposite using N,N'-bis(salicylidene)ethylenediaminocobalt(ii) as a precursor and graphene oxide sheets as an immobilization support for Co3O4 nanoparticles. The synthesis was facilitated by physical and chemical effects of cavitation bubbles. The synthesized nanocomposite was thoroughly characterized for its composition and morphology using Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS), Scanning electron microscopy (SEM), UV-visible, Raman and X-ray diffraction spectroscopy (XRD), etc. The results show Co3O4 nanoparticles of 10 nm (SD 3 nm) were prepared on well exfoliated sheets of GO. The applicability of the synthesized Co3O4/GO nanocomposite was optimized as a nanofiller for mixed matrix membranes (MMMs) comprised of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and polyvinyl chloride. The affinity of the prepared MMMs was evaluated for the separation of O2/N2 gases by varying the concentration of nanofiller, i.e. 0.03%, 0.04%, 0.05% and 0.075% (w/v). The results display high separation performance for O2/N2 gases with excellent permeance (N2 167 GPU and O2 432 GPU at 1 bar) and O2/N2 selectivity of 2.58, when the MMMs were loaded with 0.05% (w/v) of Co3O4/GO nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA