Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37174628

RESUMO

Amyotrophic lateral sclerosis (ALS) is a multi-systemic, incurable, amyloid disease affecting the motor neurons, resulting in the death of patients. The disease is either sporadic or familial with SOD1, C9orf72, FUS, and TDP-43 constituting the majority of familial ALS. Multi-omics studies on patients and model systems like mice and yeast have helped in understanding the association of various signaling and metabolic pathways with the disease. The yeast model system has played a pivotal role in elucidating the gene amyloid interactions. We carried out an integrated transcriptomic and metabolomic analysis of the TDP-43 expressing yeast model to elucidate deregulated pathways associated with the disease. The analysis shows the deregulation of the TCA cycle, single carbon metabolism, glutathione metabolism, and fatty acid metabolism. Transcriptomic analysis of GEO datasets of TDP-43 expressing motor neurons from mice models of ALS and ALS patients shows considerable overlap with experimental results. Furthermore, a yeast model was used to validate the obtained results using metabolite addition and gene knock-out experiments. Taken together, our result shows a potential role for the TCA cycle, cellular redox pathway, NAD metabolism, and fatty acid metabolism in disease. Supplementation of reduced glutathione, nicotinate, and the keto diet might help to manage the disease.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Agregados Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos
2.
3 Biotech ; 11(12): 504, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34840926

RESUMO

P2 receptors are nucleotide-activated receptors involved in inflammation, cell proliferation osteoblastogenesis, osteoclastogenesis and their function. They can be potential role players in the pathophysiology of rheumatoid arthritis (RA). Our analysis of gene expression datasets of synovial tissue biopsy from the GEO database shows changes in the expression levels of P2 receptors. HIG-82, a synovial fibroblast cell line and RAW 264.7, a macrophage cell line are good in vitro models to study RA. Nucleotide addition experiments showed UDP Glucose significantly increased the proliferation of synovial fibroblasts (HIG-82). Similarly, nucleotides such as Adenosine tri-phosphate (ATP), Adenosine di-phosphate (ADP), Uridine tri-phosphate (UTP), Uridine di-phosphate (UDP) and Uridine diphosphoglucose (UDPG) induced elevated reactive oxygen species (ROS) and tartrate Resistant Acid Phosphatase (TRAP) activity in RAW264.7 cells. The ADP-induced TRAP could be inhibited by clopidogrel a P2Y12 inhibitor. ATP, ADP, UTP, UDP and UDPG also induced osteoclastogenesis as evident from fused multinucleate cells and expression of osteoclast markers (TRAP, Cathepsin K [CTSK]) as determined by Q-PCR. Apyrase (APY) a nucleotidase and an enzyme that is used to modulate extracellular nucleotide concentration is sufficient to induce osteoclastogenesis. Taken together our results show that nucleotides modulate synoviocyte proliferation and macrophage differentiation into osteoclast and play an important role in RA. Nucleotide receptors might be potential therapeutic targets in RA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03052-8.

4.
Sci Rep ; 11(1): 15129, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301999

RESUMO

Rheumatoid Arthritis (RA) is a chronic autoimmune disease associated with inflammation and joint remodeling. Adenosine deaminase (ADA), a risk factor in RA, degrades adenosine, an anti-inflammatory molecule, resulting in an inflammatory bias. We present an integrative analysis of clinical data, cytokines, serum metabolomics in RA patients and mechanistic studies on ADA-mediated effects on in vitro cell culture models. ADA activity differentiated patients into low and high ADA sets. The levels of the cytokines TNFα, IFNγ, IL-10, TGFß and sRANKL were elevated in RA and more pronounced in high ADA sets. Serum metabolomic analysis shows altered metabolic pathways in RA which were distinct between low and high ADA sets. Comparative analysis with previous studies shows similar pathways are modulated by DMARDs and biologics. Random forest analysis distinguished RA from control by methyl-histidine and hydroxyisocaproic acid, while hexose-phosphate and fructose-6-phosphate distinguished high ADA from low ADA. The deregulated metabolic pathways of High ADA datasets significantly overlapped with high ADA expressing PBMCs GEO transcriptomics dataset. ADA induced the death of chondrocytes, synoviocyte proliferation, both inflammation in macrophages and their differentiation into osteoclasts and impaired differentiation of mesenchymal stem cells to osteoblasts and mineralization. PBMCs expressing elevated ADA had increased expression of cytokines and P2 receptors compared to synovial macrophages which has low expression of ADA. Our data demonstrates increased cytokine levels and distinct metabolic signatures of RA based on the ADA activity, suggests an important role for ADA in the pathophysiology of RA joints and as a potential marker and therapeutic target in RA patients.


Assuntos
Adenosina Desaminase/metabolismo , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoclastos/metabolismo , Líquido Sinovial/metabolismo
5.
Sci Rep ; 11(1): 9766, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963197

RESUMO

Glaucoma of which primary open angle glaucoma (POAG) constitutes 75%, is the second leading cause of blindness. Elevated intra ocular pressure and Nitric oxide synthase (NOS) dysfunction are hallmarks of POAG. We analyzed clinical data, cytokine profile, ATP level, metabolomics and GEO datasets to identify features unique to POAG. N9 microglial cells are used to gain mechanistic insights. Our POAG cohort showed elevated ATP in aqueous humor and cytokines in plasma. Metabolomic analysis showed changes in 21 metabolites including Dimethylarginine (DMAG) and activation of tryptophan metabolism in POAG. Analysis of GEO data sets and previously published proteomic data sets bins genes into signaling and metabolic pathways. Pathways from reanalyzed metabolomic data from literature significantly overlapped with those from our POAG data. DMAG modulated purinergic signaling, ATP secretion and cytokine expression were inhibited by N-Ethylmaleimide, NO donors, BAPTA and purinergic receptor inhibitors. ATP induced elevated intracellular calcium level and cytokines expression were inhibited by BAPTA. Metabolomics of cell culture supernatant from ATP treated sets showed metabolic deregulation and activation of tryptophan metabolism. DMAG and ATP induced IDO1/2 and TDO2 were inhibited by N-Ethylmaleimide, sodium nitroprusside and BAPTA. Our data obtained from clinical samples and cell culture studies reveal a strong association of elevated DMAG, ATP, cytokines and activation of tryptophan metabolism with POAG. DMAG mediated ATP signaling, inflammation and metabolic remodeling in microglia might have implications in management of POAG.


Assuntos
Trifosfato de Adenosina/metabolismo , Humor Aquoso/metabolismo , Arginina/análogos & derivados , Citocinas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Microglia/metabolismo , Triptofano/metabolismo , Arginina/metabolismo , Feminino , Glaucoma de Ângulo Aberto/terapia , Humanos , Inflamação/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA