Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409234, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168829

RESUMO

Cells have evolved intricate mechanisms for recognizing and responding to changes in oxygen (O2) concentrations. Here, we have reprogrammed cellular hypoxia (low O2) signaling via gas tunnel engineering of prolyl hydroxylase 2 (PHD2), a non-heme iron dependent O2 sensor. Using computational modeling and protein engineering techniques, we identify a gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. We show that systematic modification of these residues can open the constriction topology of PHD2's gas tunnel. Using kinetic stopped-flow measurements with NO as a surrogate diatomic gas, we demonstrate up to 3.5-fold enhancement in its association rate to the iron center of tunnel-engineered mutants. Our most effectively designed mutant displays 9-fold enhanced catalytic efficiency (kcat/KM = 830 ± 40 M-1 s-1) in hydroxylating a peptide mimic of hypoxia inducible transcription factor HIF-1α, as compared to WT PHD2 (kcat/KM = 90 ± 9 M-1 s-1). Furthermore, transfection of plasmids that express designed PHD2 mutants in HEK-293T mammalian cells reveal significant reduction of HIF-1α and downstream hypoxia response transcripts under hypoxic conditions of 1% O2. Overall, these studies highlight activation of PHD2 as a new pathway to reprogram hypoxia responses and HIF signaling in cells.

2.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38895203

RESUMO

Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolution or structure-based rational design campaigns to improve their activities. In recent years, machine learning has been integrated into these workflows to improve the discovery of beneficial enzyme variants. In this work, we combine a structure-based machine-learning algorithm with classical molecular dynamics simulations to down select mutations for rational design of a non-heme iron-dependent lysine dioxygenase, LDO. This approach consistently resulted in functional LDO mutants and circumvents the need for extensive study of mutational activity before-hand. Our rationally designed single mutants purified with up to 2-fold higher yields than WT and displayed higher total turnover numbers (TTN). Combining five such single mutations into a pentamutant variant, LPNYI LDO, leads to a 40% improvement in the TTN (218±3) as compared to WT LDO (TTN = 160±2). Overall, this work offers a low-barrier approach for those seeking to synergize machine learning algorithms with pre-existing protein engineering strategies.

3.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766225

RESUMO

Geminal, multi-halogenated functional groups are widespread in natural products and pharmaceuticals, yet no synthetic methodologies exist that enable selective multi-halogenation of unactivated C-H bonds. Biocatalysts are powerful tools for late-stage C-H functionalization, as they operate with high degrees of regio-, chemo-, and stereoselectivity. 2-oxoglutarate (2OG)-dependent non-heme iron halogenases chlorinate and brominate aliphatic C-H bonds offering a solution for achieving these challenging transformations. Here, we describe the ability of a non-heme iron halogenase, SyrB2, to controllably halogenate non-native substrate alpha-aminobutyric acid (Aba) to yield mono-chlorinated, di-chlorinated, and tri-chlorinated products. These chemoselective outcomes are achieved by controlling the loading of 2OG cofactor and SyrB2 biocatalyst. By using a ferredoxin-based biological reductant for electron transfer to the catalytic center of SyrB2, we demonstrate order-of-magnitude enhancement in the yield of tri-chlorinated product that were previously inaccessible using any single halogenase enzyme. We also apply these strategies to broaden SyrB2's reactivity scope to include multi-bromination and demonstrate chemoenzymatic conversion of the ethyl side chain in Aba to an ethylyne functional group. We show how steric hindrance induced by the successive addition of halogen atoms on Aba's C4 carbon dictates the degree of multi-halogenation by hampering C3-C4 bond rotation within SyrB2's catalytic pocket. Overall, our work showcases the synthetic potential of iron halogenases to facilitate multi-C-H functionalization chemistry.

4.
J Inorg Biochem ; 257: 112576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761578

RESUMO

DosT and DosS are heme-based kinases involved in sensing and signaling O2 tension in the microenvironment of Mycobacterium tuberculosis (Mtb). Under conditions of low O2, they activate >50 dormancy-related genes and play a pivotal role in the induction of dormancy and associated drug resistance during tuberculosis infection. In this work, we reexamine the O2 binding affinities of DosT and DosS to show that their equilibrium dissociation constants are 3.3±1.0 µM and 0.46±0.08 µM respectively, which are six to eight-fold stronger than what has been widely referred to in literature. Furthermore, stopped-flow kinetic studies reveal association and dissociation rate constants of 0.84 µM-1 s-1 and 2.8 s-1, respectively for DosT, and 7.2 µM-1 s-1 and 3.3 s-1, respectively for DosS. Remarkably, these tighter O2 binding constants correlate with distinct stages of hypoxia-induced non-replicating persistence in the Wayne model of Mtb. This knowledge opens doors to deconvoluting the intricate interplay between hypoxia adaptation stages and the signal transduction capabilities of these important heme-based O2 sensors.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Oxigênio , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Oxigênio/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Adaptação Fisiológica , Protamina Quinase/metabolismo , Protamina Quinase/química , Cinética , Proteínas Quinases/metabolismo , Proteínas Quinases/química
5.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617253

RESUMO

Determination of substrate binding affinity (Kd) is critical to understanding enzyme function. An extensive number of methods have been developed and employed to study ligand/substrate binding, but the best approach depends greatly on the substrate and the enzyme in question. Below we describe how to measure the Kd of BesD, a non-heme iron halogenase, for its native substrate lysine using equilibrium dialysis with subsequent detection with High Performance Liquid Chromatography (HPLC). This method can be performed in anaerobic glove bag settings, requires readily available HPLC instrumentation for subsequent detection, and is adaptable to meet the needs of a variety of substrate affinity measurements.

6.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464195

RESUMO

DosT and DosS are heme-based kinases involved in sensing and signaling O2 tension in the microenvironment of Mycobacterium tuberculosis (Mtb). Under conditions of low O2, they activate >50 dormancy-related genes and play a pivotal role in the induction of dormancy and associated drug resistance during tuberculosis infection. In this work, we reexamine the O2 binding affinities of DosT and DosS to show that their equilibrium dissociation constants are 3.3±1 µM and 0.46±0.08 µM respectively, which are six to eight-fold stronger than what has been widely referred to in literature. Furthermore, stopped-flow kinetic studies reveal association and dissociation rate constants of 0.84 µM-1s-1 and 2.8 s-1, respectively for DosT, and 7.2 µM-1s-1 and 3.3 s-1, respectively for DosS. Remarkably, these tighter O2 binding constants correlate with distinct stages of hypoxia-induced non-replicating persistence in the Wayne model of Mtb. This knowledge opens doors to deconvoluting the intricate interplay between hypoxia adaptation stages and the signal transduction capabilities of these important heme-based O2 sensors.

7.
Biochemistry ; 62(22): 3283-3292, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905955

RESUMO

DosS is a heme-containing histidine kinase that triggers dormancy transformation inMycobacterium tuberculosis. Sequence comparison of the catalytic ATP-binding (CA) domain of DosS to other well-studied histidine kinases reveals a short ATP-lid. This feature has been thought to block binding of ATP to DosS's CA domain in the absence of interactions with DosS's dimerization and histidine phospho-transfer (DHp) domain. Here, we use a combination of computational modeling, structural biology, and biophysical studies to re-examine ATP-binding modalities in DosS. We show that the closed-lid conformation observed in crystal structures of DosS CA is caused by the presence of Zn2+ in the ATP binding pocket that coordinates with Glu537 on the ATP-lid. Furthermore, circular dichroism studies and comparisons of DosS CA's crystal structure with its AlphaFold model and homologous DesK reveal that residues 503-507 that appear as a random coil in the Zn2+-coordinated crystal structure are in fact part of the N-box α helix needed for efficient ATP binding. Such random-coil transformation of an N-box α helix turn and the closed-lid conformation are both artifacts arising from large millimolar Zn2+ concentrations used in DosS CA crystallization buffers. In contrast, in the absence of Zn2+, the short ATP-lid of DosS CA has significant conformational flexibility and can effectively bind AMP-PNP (Kd = 53 ± 13 µM), a non-hydrolyzable ATP analog. Furthermore, the nucleotide affinity remains unchanged when CA is conjugated to the DHp domain (Kd = 51 ± 6 µM). In all, our findings reveal that the short ATP-lid of DosS CA does not hinder ATP binding and provide insights that extend to 2988 homologous bacterial proteins containing such ATP-lids.


Assuntos
Proteínas de Bactérias , Histidina , Domínio Catalítico , Histidina Quinase/metabolismo , Proteínas de Bactérias/química , Trifosfato de Adenosina/metabolismo , Conformação Proteica
8.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609209

RESUMO

Molecular engineering of biocatalysts has revolutionized complex synthetic chemistry and sustainable catalysis. Here, we show that it is also possible to use engineered biocatalysts to reprogram signal transduction in human cells. More specifically, we manipulate cellular hypoxia (low O2) signaling by engineering the gas-delivery tunnel of prolyl hydroxylase 2 (PHD2), an iron-dependent enzymatic O2 sensor. Using computational modeling and rational protein design techniques, we resolve PHD2's gas tunnel and critical residues therein that limit the flow of O2 to PHD2's catalytic core. Systematic modification of these residues open the constriction topology of PHD2's gas tunnel with the most effectively designed mutant displaying 11-fold enhanced hydroxylation efficiency. Furthermore, transfection of plasmids that express these engineered PHD2 mutants in HEK-293T cells reveal significant reduction in the levels of hypoxia inducible factor (HIF-1α) even under hypoxic conditions. Our studies reveal that activated PHD2 mutants can reprogram downstream HIF pathways in cells to simulate physiological O2-like conditions despite extreme hypoxia and underscores the potential of engineered biocatalysts in controlling cellular function.

9.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398500

RESUMO

DosS is a heme-sensor histidine kinase that responds to redox-active stimuli in mycobacterial environments by triggering dormancy transformation. Sequence comparison of the catalytic ATP-binding (CA) domain of DosS to other well-studied histidine kinases suggests that it possesses a rather short ATP-lid. This feature has been thought to inhibit DosS kinase activity by blocking ATP binding in the absence of interdomain interactions with the dimerization and histidine phospho-transfer (DHp) domain of full-length DosS. Here, we use a combination of computational modeling, structural biology, and biophysical studies to re-examine ATP-binding modalities in DosS's CA domain. We show that the closed lid conformation observed in protein crystal structures of DosS CA is caused by the presence of a zinc cation in the ATP binding pocket that coordinates with a glutamate residue on the ATP-lid. Furthermore, circular dichroism (CD) studies and comparisons of DosS CA crystal structure with its AlphaFold model and homologous DesK reveal that a key N-box alpha-helix turn of the ATP pocket manifests as a random coil in the zinc-coordinated protein crystal structure. We note that this closed lid conformation and the random-coil transformation of an N-box alpha-helix turn are artifacts arising from the millimolar zinc concentration used in DosS CA crystallization conditions. In contrast, in the absence of zinc, we find that the short ATP-lid of DosS CA has significant conformational flexibility and can bind ATP (Kd = 53 ± 13 µM). We conclude that DosS CA is almost always bound to ATP under physiological conditions (1-5 mM ATP, sub-nanomolar free zinc) in the bacterial environment. Our findings elucidate the conformational adaptability of the short ATP-lid, its relevance to ATP binding in DosS CA and provide insights that extends to 2988 homologous bacterial proteins containing such ATP-lids.

10.
bioRxiv ; 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37292651

RESUMO

Non-heme iron halogenases (NHFe-Hals) catalyze the direct insertion of a chloride/bromide ion at an unactivated carbon position using a high-valent haloferryl intermediate. Despite more than a decade of structural and mechanistic characterization, how NHFe-Hals preferentially bind specific anions and substrates for C-H functionalization remains unknown. Herein, using lysine halogenating BesD and HalB enzymes as model systems, we demonstrate strong positive cooperativity between anion and substrate binding to the catalytic pocket. Detailed computational investigations indicate that a negatively charged glutamate hydrogen-bonded to iron's equatorial-aqua ligand acts as an electrostatic lock preventing both lysine and anion binding in the absence of the other. Using a combination of UV-Vis spectroscopy, binding affinity studies, stopped-flow kinetics investigations, and biochemical assays, we explore the implication of such active site assembly towards chlorination, bromination, and azidation reactivities. Overall, our work highlights previously unknown features regarding how anion-substrate pair binding govern reactivity of iron halogenases that are crucial for engineering next-generation C-H functionalization biocatalysts.

11.
Curr Opin Chem Biol ; 76: 102331, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311385

RESUMO

Microbes utilize numerous metal cofactor-containing proteins to recognize and respond to constantly fluctuating redox stresses in their environment. Gaining an understanding of how these metalloproteins sense redox events, and how they communicate such information downstream to DNA to modulate microbial metabolism, is a topic of great interest to both chemists and biologists. In this article, we review recently characterized examples of metalloprotein sensors, focusing on the coordination and oxidation state of the metals involved, how these metals are able to recognize redox stimuli, and how the signal is transmitted beyond the metal center. We discuss specific examples of iron, nickel, and manganese-based microbial sensors, and identify gaps in knowledge in the field of metalloprotein-based signal transduction pathways.


Assuntos
Metaloproteínas , Metaloproteínas/metabolismo , Metais/metabolismo , Ferro/metabolismo , Oxirredução , Transdução de Sinais
12.
Methods Mol Biol ; 2648: 1-10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37039981

RESUMO

Protein-based oxygen sensors exhibit a wide range of affinity values ranging from low nanomolar to high micromolar. How proteins utilize different metals, cofactors, and macromolecular structure to regulate their oxygen affinity (Kd) to a value that is appropriate for their biological function is an important question in biochemistry and microbiology. In this chapter, we describe a simple setup that integrates a UV-Vis spectrometer with an oxygen optode for direct determination of Kd of heme-containing oxygen sensors. We provide details on how to set up the assay, acquire and fit data for accurate Kd determination using Cs H-NOX (Kd = 23 ± 2 nM) as an example, and also discuss tips and tricks to make the assay work for other oxygen-binding proteins.


Assuntos
Heme , Oxigênio , Oxigênio/metabolismo , Heme/química , Análise Espectral , Proteínas de Bactérias/metabolismo , Estrutura Molecular
13.
J Biol Inorg Chem ; 25(2): 181-186, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31897725

RESUMO

Oxygen affinity is an important property of metalloproteins that helps elucidate their reactivity profile and mechanism. Heretofore, oxygen affinity values were determined either using flash photolysis and polarography techniques that require expensive instrumentation, or using oxygen titration methods which are erroneous at low nanomolar and at high millimolar oxygen concentrations. Here, we describe an inexpensive, easy-to-setup, and a one-pot method for oxygen affinity measurements that uses the enzyme chlorite dismutase (Cld) as a precise in situ oxygen source. Using this method, we measure thermodynamic and kinetic oxygen affinities (Kd and KM) of different classes of heme and non-heme metalloproteins involved in oxygen transport, sensing, and catalysis. The method enables oxygen affinity measurements over a wide concentration range from 10 nM to 5 mM which is unattainable by simply diluting oxygen-saturated buffers. In turn, we were able to precisely measure oxygen affinities of a model set of eight different metalloproteins with affinities ranging from 48 ± 3 nM to 1.18 ± 0.03 mM. Overall, the Cld method is easy and inexpensive to set up, requires significantly lower quantities of protein, enables precise oxygen affinity measurements, and is applicable for proteins exhibiting nanomolar-to-millimolar affinity values.


Assuntos
Oxirredutases/metabolismo , Oxigênio/análise , Cinética , Modelos Moleculares , Oxigênio/metabolismo , Termodinâmica
14.
Acc Chem Res ; 52(4): 935-944, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30912643

RESUMO

Metalloproteins set the gold standard for performing important functions, including catalyzing demanding reactions under mild conditions. Designing artificial metalloenzymes (ArMs) to catalyze abiological reactions has been a major endeavor for many years, but most ArM activities are far below those of native enzymes, making them unsuitable for most pratical applications. A critical step to advance the field is to fundamentally understand what it takes to not only confer but also fine-tune ArM activities so they match those of native enzymes. Indeed, only once we can freely modulate ArM activity to rival (or surpass!) natural enzymes can the potential of ArMs be fully realized. A key to unlocking ArM potential is the observation that one metal primary coordination sphere can display a range of functions and levels of activity, leading to the realization that secondary coordination sphere (SCS) interactions are critically important. However, SCS interactions are numerous, long-range, and weak, making them very difficult to reproduce in ArMs. Furthermore, natural enzymes are tied to a small set of biologically available functional moieties from canonical amino acids and physiologically available metal ions and metallocofactors, severely limiting the chemical space available to probe and tune ArMs. In this Account, we summarize the use of unnatural amino acids (UAAs) and non-native metal ions and metallocofactors by our group and our collaborators to probe and modulate ArM functions. We incorporated isostructural UAAs in a type 1 copper (T1Cu) protein azurin to provide conclusive evidence that axial ligand hydrophobicity is a major determinant of T1Cu redunction potential ( E°'). Closely related work from other groups are also discussed. We also probed the role of protein backbone interactions that cannot be altered by standard mutagenesis by replacing the peptide bond with an ester linkage. We used insight gained from these studies to tune the E°' of azurin across the entire physiological range, the broadest range ever achieved in a single metalloprotein. Introducing UAA analogues of Tyr into ArM models of heme-copper oxidase (HCO) revealed a linear relationship between p Ka, E°', and activity. We also substituted non-native hemes and non-native metal ions for their native equivalents in these models to resolve several issues that were intractable in native HCOs and the closely related nitric oxide reductases, such as their roles in modulating substrate affinity, electron transfer rate, and activity. We incorporated abiological cofactors such as ferrocene and Mn(salen) into azurin and myoglobin, respectively, to stabilize these inorganic and organometallic compounds in water, confer abiological functions, tune their E°' and activity through SCS interactions, and show that the approach to metallocofactor anchoring and orientation can tune enantioselectivity and alter function. Replacing Cu in azurin with non-native Fe or Ni can impart novel activities, such as superoxide reduction and C-C bond formation. While progress was made, we have identified only a small fraction of the interactions that can be generally applied to ArMs to fine-tune their functions. Because SCS interactions are subtle and heavily interconnected, it has been difficult to characterize their effects quantitatively. It is vital to develop spectroscopic and computational techniques to detect and quantify their effects in both resting states and catalytic intermediates.


Assuntos
Aminoácidos/metabolismo , Metaloproteínas/metabolismo , Metais/metabolismo , Aminoácidos/química , Azurina/metabolismo , Sítios de Ligação , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Íons/química , Ligantes , Metalocenos/química , Metalocenos/metabolismo , Metaloproteínas/química , Metais/química , Mioglobina/química , Mioglobina/metabolismo , Oxirredutases/metabolismo , Estereoisomerismo
15.
Struct Bond ; 182: 153-173, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-36567794

RESUMO

Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn and Cu. On the other hand, Ca, Zn and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss the periodic table's impact on bio-inorganic chemistry, by exploring reasons behind this selective choice of metals biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency and ligand affinity determine the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals of the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors and more effective drugs.

16.
Proc Natl Acad Sci U S A ; 115(24): 6195-6200, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29802230

RESUMO

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.


Assuntos
Heme , Oxirredutases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Heme/química , Heme/metabolismo , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Análise Espectral
17.
ACS Catal ; 8(9): 8915-8924, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35693844

RESUMO

Myoglobin based biosynthetic models of perturbed cytochrome c oxidase (CcO) active site are reconstituted, in situ, on electrodes where glutamate residues are systematically introduced in the distal site of the heme/Cu active site instead of a tyrosine residue. These biochemical electrodes show efficient 4e-/4H+ reduction with turnover rates and numbers more than 107 M-1 s-1 and 104, respectively. The H2O/D2O isotope effects of these series of crystallographically characterized mutants bearing zero, one, and two glutamate residues near the heme Cu active site of these perturbed CcO mimics are 16, 4, and 2, respectively. In situ SERRS-RDE data indicate complete change in the rate-determining step as proton transfer residues are introduced near the active site. The high selectivity for 4e-/4H+ O2 reduction and systematic variation of KSIE demonstrate the dominant role of proton transfer residues on the isotope effect on rate and rate-determining step of O2 reduction.

18.
J Am Chem Soc ; 139(35): 12209-12218, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28768416

RESUMO

The presence of a nonheme metal, such as copper and iron, in the heme-copper oxidase (HCO) superfamily is critical to the enzymatic activity of reducing O2 to H2O, but the exact mechanism the nonheme metal ion uses to confer and fine-tune the activity remains to be understood. We herein report that manganese and cobalt can bind to the same nonheme site and confer HCO activity in a heme-nonheme biosynthetic model in myoglobin. While the initial rates of O2 reduction by the Mn, Fe, and Co derivatives are similar, the percentages of reactive oxygen species (ROS) formation are 7%, 4%, and 1% and the total turnovers are 5.1 ± 1.1, 13.4 ± 0.7, and 82.5 ± 2.5, respectively. These results correlate with the trends of nonheme-metal-binding dissociation constants (35, 22, and 9 µM) closely, suggesting that tighter metal binding can prevent ROS release from the active site, lessen damage to the protein, and produce higher total turnover numbers. Detailed spectroscopic, electrochemical, and computational studies found no evidence of redox cycling of manganese or cobalt in the enzymatic reactions and suggest that structural and electronic effects related to the presence of different nonheme metals lead to the observed differences in reactivity. This study of the roles of nonheme metal ions beyond the Cu and Fe found in native enzymes has provided deeper insights into nature's choice of metal ion and reaction mechanism and allows for finer control of the enzymatic activity, which is a basis for the design of efficient catalysts for the oxygen reduction reaction in fuel cells.


Assuntos
Cobalto/química , Heme/química , Manganês/química , Modelos Moleculares , Oxirredutases/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Oxirredução , Espectroscopia por Absorção de Raios X
19.
Angew Chem Int Ed Engl ; 56(23): 6622-6626, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28470988

RESUMO

Heme-copper oxidase (HCO) is a class of respiratory enzymes that use a heme-copper center to catalyze O2 reduction to H2 O. While heme reduction potential (E°') of different HCO types has been found to vary >500 mV, its impact on HCO activity remains poorly understood. Here, we use a set of myoglobin-based functional HCO models to investigate the mechanism by which heme E°' modulates oxidase activity. Rapid stopped-flow kinetic measurements show that increasing heme E°' by ca. 210 mV results in increases in electron transfer (ET) rates by 30-fold, rate of O2 binding by 12-fold, O2 dissociation by 35-fold, while decreasing O2 affinity by 3-fold. Theoretical calculations reveal that E°' modulation has significant implications on electronic charge of both heme iron and O2 , resulting in increased O2 dissociation and reduced O2 affinity at high E°' values. Overall, this work suggests that fine-tuning E°' in HCOs and other heme enzymes can modulate their substrate affinity, ET rate and enzymatic activity.


Assuntos
Heme/metabolismo , Mioglobina/metabolismo , Oxirredutases/metabolismo , Domínio Catalítico , Transporte de Elétrons , Histidina/metabolismo , Modelos Biológicos , Mutagênese , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxigênio/metabolismo , Análise Espectral/métodos , Especificidade por Substrato
20.
Nat Chem ; 9(3): 257-263, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28221360

RESUMO

Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.


Assuntos
Cobre/química , Ferro/química , Oxirredutases/química , Oxigênio/química , Biocatálise , Cobre/metabolismo , Técnicas Eletroquímicas , Ferro/metabolismo , Cinética , Modelos Teóricos , Oxirredução , Oxirredutases/metabolismo , Espectrofotometria Infravermelho , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA