Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
mBio ; : e0111823, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889005

RESUMO

Multi-drug resistant (MDR) Pseudomonas aeruginosa harbor a complex array of ß-lactamases and non-enzymatic resistance mechanisms. In this study, the activity of a ß-lactam/ß-lactam-enhancer, cefepime/zidebactam, and novel ß-lactam/ß-lactamase inhibitor combinations was determined against an MDR phenotype-enriched, challenge panel of P. aeruginosa (n = 108). Isolates were multi-clonal as they belonged to at least 29 distinct sequence types (STs) and harbored metallo-ß-lactamases, serine ß-lactamases, penicillin binding protein (PBP) mutations, and other non-enzymatic resistance mechanisms. Ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, and cefepime/taniborbactam demonstrated MIC90s of >128 mg/L, while cefepime/zidebactam MIC90 was 16 mg/L. In a neutropenic-murine lung infection model, a cefepime/zidebactam human epithelial-lining fluid-simulated regimen achieved or exceeded a translational end point of 1-log10 kill for the isolates with elevated cefepime/zidebactam MICs (16-32 mg/L), harboring VIM-2 or KPC-2 and alterations in PBP2 and PBP3. In the same model, to assess the impact of zidebactam on the pharmacodynamic (PD) requirement of cefepime, dose-fractionation studies were undertaken employing cefepime-susceptible P. aeruginosa isolates. Administered alone, cefepime required 47%-68% fT >MIC for stasis to ~1 log10 kill effect, while cefepime in the presence of zidebactam required just 8%-16% for >2 log10 kill effect, thus, providing the pharmacokinetic/PD basis for in vivo efficacy of cefepime/zidebactam against isolates with MICs up to 32 mg/L. Unlike ß-lactam/ß-lactamase inhibitors, ß-lactam enhancer mechanism-based cefepime/zidebactam shows a potential to transcend the challenge of ever-evolving resistance mechanisms by targeting multiple PBPs and overcoming diverse ß-lactamases including carbapenemases in P. aeruginosa.IMPORTANCECompared to other genera of Gram-negative pathogens, Pseudomonas is adept in acquiring complex non-enzymatic and enzymatic resistance mechanisms thus remaining a challenge to even novel antibiotics including recently developed ß-lactam and ß-lactamase inhibitor combinations. This study shows that the novel ß-lactam enhancer approach enables cefepime/zidebactam to overcome both non-enzymatic and enzymatic resistance mechanisms associated with a challenging panel of P. aeruginosa. This study highlights that the ß-lactam enhancer mechanism is a promising alternative to the conventional ß-lactam/ß-lactamase inhibitor approach in combating ever-evolving MDR P. aeruginosa.

2.
Biomed Chromatogr ; 36(6): e5354, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35141944

RESUMO

Antibiotic susceptibility test (AST) discs are used as an in-vitro diagnostic tool to select the appropriate antibiotic to treat an infection. Generally, the concentration of the drug loaded on to the AST discs is measured by studying its activity against quality control organisms. This methodology has several limitations-it is time consuming, requires trained manpower, has a wider acceptance criteria of zone of inhibitions-causing ambiguity in judging smaller variations in drug concentration. To overcome these issues, we have developed and validated high-performance liquid chromatographic (HPLC) methods for the determination of strength of AST discs for in-house researched antibiotics, namely Levonadifloxacin/WCK 771, Nafithromycin/WCK 4873, Cefepime-Tazobactam/WCK 4282, and Cefepime-Zidebactam/WCK 5222. The drugs were extracted from the AST discs using an appropriate solvent. The developed methods are simple, accurate, precise, reproducible, rugged, and robust. They are efficient in terms of time, and can be easily conducted in a quality control laboratory during release as well as stability evaluation of AST disc. Application of HPLC methods for the determination of strength of AST discs ensures flawless quality and, consequently, a better selection of drugs to treat bacterial infections in clinics.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefepima , Testes de Sensibilidade Microbiana , beta-Lactamases
4.
Diagn Microbiol Infect Dis ; 100(3): 115327, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744624

RESUMO

Cefepime/zidebactam is in clinical development for the treatment of carbapenem-resistant Gram-negative infections. MICs of cefepime/zidebactam (1:1) and comparators against Enterobacterales (n = 563), Pseudomonas (n = 172) and Acinetobacter baumannii (n =181) collected from 15 Greek hospitals (2014-2018) were determined by reference broth microdilution method. The isolates exhibited high carbapenem resistance rates [(Enterobacterales (75%), Pseudomonas (75%) and A. baumannii (98.3%)]. Cefepime/zidebactam showed MIC50/90 of 0.5/2 mg/L, against Enterobacterales including metallo-ß-lactamases (MBL)-producers. Reduced susceptibility rates to tigecycline (16.8%), colistin (47.4%), ceftazidime/avibactam (59.8%), and imipenem/relebactam (61%) indicated high prevalence of multi-drug resistance among Greek Enterobacterales. Cefepime/zidebactam exhibited MIC50/90 of 8/16 mg/L against Pseudomonas including MBL-producers. The MIC50/90 of ceftazidime/avibactam and imipenem/relebactam were high (≥32 mg/L). Cefepime/zidebactam showed MIC90 of 64 mg/L against A. baumannii which is within its therapeutic scope. Other antibiotics including colistin showed limited activity against A. baumannii. The activity of cefepime/zidebactam against multi-drug-resistant isolates is attributable to zidebactam mediated novel ß-lactam-enhancer mechanism.


Assuntos
Compostos Azabicíclicos/farmacologia , Cefepima/farmacologia , Cefalosporinas/farmacologia , Ciclo-Octanos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Piperidinas/farmacologia , Antibacterianos/farmacologia , Compostos Azabicíclicos/administração & dosagem , Cefepima/administração & dosagem , Ciclo-Octanos/administração & dosagem , Grécia , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Piperidinas/administração & dosagem
5.
J Antimicrob Chemother ; 75(12): 3563-3567, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772098

RESUMO

BACKGROUND: Recent reports reveal the emergence of Escherichia coli isolates harbouring a novel resistance mechanism based on four-amino-acid inserts in PBP3. These organisms concomitantly expressed ESBLs or/and serine-/metallo-carbapenemases and were phenotypically detected by elevated aztreonam/avibactam MICs. OBJECTIVES: The in vitro activities of the investigational antibiotic cefepime/zidebactam and approved antibiotics (ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam and others) were determined against E. coli isolates harbouring four-amino-acid inserts in PBP3. METHODS: Whole-genome sequenced E. coli isolates (n = 89) collected from a large tertiary care hospital in Southern India (n = 64) and from 12 tertiary care hospitals located across India (n = 25) during 2016-18, showing aztreonam/avibactam MICs ≥1 mg/L (≥4 times the aztreonam epidemiological cut-off) were included in this study. The MICs of antibiotics were determined using the reference broth microdilution method. RESULTS: Four-amino-acid inserts [YRIK (n = 30) and YRIN (n = 53)] were found in 83/89 isolates. Among 83 isolates, 65 carried carbapenemase genes [blaNDM (n = 39), blaOXA-48-like (n = 11) and blaNDM + blaOXA-48-like (n = 15)] and 18 isolates produced ESBLs/class C ß-lactamases only. At least 16 unique STs were noted. Cefepime/zidebactam demonstrated potent activity, with all isolates inhibited at ≤1 mg/L. Comparator antibiotics including ceftazidime/avibactam and imipenem/relebactam showed limited activities. CONCLUSIONS: E. coli isolates concurrently harbouring four-amino-acid inserts in PBP3 and NDM are an emerging therapeutic challenge. Assisted by the PBP2-binding action of zidebactam, the cefepime/zidebactam combination overcomes both target modification (PBP3 insert)- and carbapenemase (NDM)-mediated resistance mechanisms in E. coli.


Assuntos
Aminoácidos , Escherichia coli , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cefepima , Ciclo-Octanos , Escherichia coli/genética , Índia , Testes de Sensibilidade Microbiana , Piperidinas , beta-Lactamases/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-31208999

RESUMO

Levonadifloxacin is a novel benzoquinolizine subclass of fluoroquinolone, active against quinolone-resistant Staphylococcus aureus A phase 3 trial for levonadifloxacin and its oral prodrug was recently completed. The present study identified area under the concentration-time curve for the free, unbound fraction of a drug divided by the MIC (fAUC/MIC) as an efficacy determinant for levonadifloxacin in a neutropenic murine lung infection model. Mean plasma fAUC/MIC requirement for static and 1 log10 kill effects against 9 S. aureus were 8.1 ± 6.0 and 25.8 ± 12.3, respectively. These targets were employed in the selection of phase 3 doses.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Animais , Feminino , Fluoroquinolonas/sangue , Fluoroquinolonas/uso terapêutico , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/microbiologia
7.
Drug Des Devel Ther ; 13: 4351-4365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920285

RESUMO

Levonadifloxacin and its prodrug alalevonadifloxacin are novel broad-spectrum anti-MRSA agents belonging to the benzoquinolizine subclass of quinolone, formulated for intravenous and oral administration, respectively. Various in vitro and in vivo studies have established their antimicrobial spectrum against clinically significant Gram-positive, Gram-negative, atypical, and anaerobic pathogens. The potent activity of levonadifloxacin against MRSA, quinolone-resistant Staphylococcus aureus, and hetero-vancomycin-intermediate strains is an outcome of its well-differentiated mechanism of action involving preferential targeting to DNA gyrase. Potent anti-staphylococcal activity of levonadifloxacin was also observed in clinically relevant experimental conditions such as acidic pH, the intracellular environment, and biofilms, suggesting that the drug is bestowed with enabling features for the treatment of difficult-to-treat MRSA infections. Levonadifloxacin also retains clinically relevant activity against resistant respiratory pathogens such as macrolide- and penicillin-resistant Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenzae, and Moraxella catarrhalis and, in conjunction with clinically established best-in-class human epithelial lung fluid concentration, has promising potential in the management of recalcitrant respiratory infections. Attractive features, such as resistance to NorA efflux, divergent mechanism of action in S. aureus, cidality against high-inoculum cultures, and low mutant prevention concentration, are likely to confer favorable resistance-suppression features to both agents. In vivo studies have shown promising efficacy in models of acute bacterial skin and skin structure infection, respiratory infections, pyelonephritis, and peritonitis at human-equivalent mouse doses. Both formulations were well tolerated in multiple phase I studies and overall showed a dose-dependent exposure. In particular, oral alalevonadifloxacin showed excellent bioavailability (~90%), almost mirroring the pharmacokinetic profile of intravenous levonadifloxacin, indicating the prodrug's seamless absorption and efficient cleavage to release the active parent drug. Hepatic impairment studies showed that clinical doses of levonadifloxacin/alalevonadifloxacin are not required to be adjusted for various degrees of hepatic impairment. With the successful completion of phase II and phase III studies for both levonadifloxacin and alalevonadifloxacin, they represent clinically attractive therapeutic options for the treatment of infections caused by multi-drug-resistant Gram-positive organisms. Herein, we review the current evidence on therapeutically appealing attributes of levonadifloxacin and alalevonadifloxacin, which are based on a range of non-clinical in vitro and in vivo investigations and clinical studies.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Quinolizinas/farmacologia , Animais , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolizinas/química , Quinolonas
8.
J Med Chem ; 61(9): 4067-4086, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29627985

RESUMO

Limited treatment options exist to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria possessing broad-spectrum ß-lactamases. The design of novel ß-lactamase inhibitors is of paramount importance. Here, three novel diazabicyclooctanes (DBOs), WCK 5153, zidebactam (WCK 5107), and WCK 4234 (compounds 1-3, respectively), were synthesized and biochemically characterized against clinically important bacteria. Compound 3 inhibited class A, C, and D ß-lactamases with unprecedented k2/ K values against OXA carbapenemases. Compounds 1 and 2 acylated class A and C ß-lactamses rapidly but not the tested OXAs. Compounds 1-3 formed highly stable acyl-complexes as demonstrated by mass spectrometry. Crystallography revealed that 1-3 complexed with KPC-2 adopted a "chair conformation" with the sulfate occupying the carboxylate binding region. The cefepime-2 and meropenem-3 combinations were effective in murine peritonitis and neutropenic lung infection models caused by MDR Acinetobacter baumannii. Compounds 1-3 are novel ß-lactamase inhibitors that demonstate potent cross-class inhibition, and clinical studies targeting MDR infections are warranted.


Assuntos
Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Ciclo-Octanos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Octanos/farmacologia , Piperidinas/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Animais , Compostos Azabicíclicos/química , Compostos Azabicíclicos/uso terapêutico , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/uso terapêutico , Ciclo-Octanos/química , Ciclo-Octanos/uso terapêutico , Sinergismo Farmacológico , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Octanos/química , Octanos/uso terapêutico , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Piperidinas/química , Piperidinas/uso terapêutico , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico
11.
Bioorg Med Chem Lett ; 18(16): 4678-81, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18650090

RESUMO

In search for a new antibacterial agent with improved antimicrobial spectrum and potency, we designed and synthesized a series of novel 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones 7a-h by convergent synthesis approach. All the synthesized compounds were assayed for their in-vitro antibacterial activities against gram-negative and gram-positive bacteria. The preliminary structure-activity relationship, to elucidate the essential structure requirements for the antimicrobial activity that results into anti-MRSA (methicillin-resistant S. aureus) potential, has been described. Amongst the synthesized compounds 7d, 7e, 7f and 7h were found to possess activity against methicillin-resistant S. aureus in addition to the activity against other bacterial strains such as E. faecalis, S. pneumoniae, and E. coli.


Assuntos
Antibacterianos/síntese química , Química Farmacêutica/métodos , Cromonas/síntese química , Resistência a Meticilina/efeitos dos fármacos , Tetrazóis/síntese química , Antibacterianos/farmacologia , Ácidos Carboxílicos/química , Cromonas/farmacologia , Desenho de Fármacos , Escherichia coli/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Químicos , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tetrazóis/química , Tetrazóis/farmacologia
12.
Antimicrob Agents Chemother ; 50(11): 3568-79, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16940059

RESUMO

WCK 771 is a broad-spectrum fluoroquinolone with enhanced activity against quinolone-resistant staphylococci. To understand the impact of the target-level interactions of WCK 771 on its antistaphylococcal pharmacodynamic properties, we determined the MICs for genetically defined mutants and studied the mutant prevention concentrations (MPCs), the frequency of mutation, and the cidality against the wild type and double mutants. There was a twofold increase in the MICs of WCK 771 for single gyrA mutants, indicating that DNA gyrase is its primary target. All first- and second-step mutants selected by WCK 771 revealed gyrA and grlA mutations, respectively. The MICs of WCK 771 and clinafloxacin were found to be superior to those of other quinolones against strains with double and triple mutations. WCK 771 was also cidal for high-density double mutants at low concentrations. WCK 771 and clinafloxacin showed narrow mutant selection windows compared to those of the other quinolones. Against a panel of 50 high-level quinolone-resistant clinical isolates of staphylococci (ciprofloxacin MIC > or = 16 microg/ml), the WCK 771 MPCs were < or =2 microg/ml for 68% of the strains and < or =4 microg/ml for 28% of the strains. Our results demonstrate that gyrA is the primary target of WCK 771 and that it has pharmacodynamic properties remarkably different from those of quinolones with dual targets (garenoxacin and moxifloxacin) and topoisomerase IV-specific quinolones (trovafloxacin). WCK 771 displayed an activity profile comparable to that of clinafloxacin, a dual-acting quinolone with a high affinity to DNA gyrase. Overall, the findings signify the key role of DNA gyrase in determining the optimal antistaphylococcal features of quinolones.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Quinolonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Resistência a Meticilina/genética , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
13.
Eur J Med Chem ; 40(12): 1325-30, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16126308

RESUMO

New series of 1-aryl-1,4-dihydro-4-oxo-6-methyl pyridazine-3-carboxylic acid has been synthesized and the structures of the new compounds were established on the basis of 1H-NMR, mass (ES/MS), elemental analysis and IR spectral data. In vitro antibacterial activity (MIC activity) was evaluated and compared with standard drugs ciprofloxacin, sparfloxacin and trovafloxacin. Most of the compounds in the series have shown very interesting antibacterial activity against both gram-positive and gram-negative organisms. In this paper, we describe studies leading to identification of antibacterial agents incorporating novel pyridazine ring surrogate. In a gratifying result, the initial pyridazine-3-carboxylic acid analogues prepared were found to exhibit in vitro antibacterial activity approaching that of corresponding fluoroquinolone progenitor.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Piridazinas/síntese química , Piridazinas/farmacologia , Antibacterianos/química , Ácidos Carboxílicos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridazinas/química , Relação Estrutura-Atividade
14.
Antimicrob Agents Chemother ; 48(12): 4754-61, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561853

RESUMO

WCK 771, the arginine salt of S-(-)-nadifloxacin, was evaluated in animal models of staphylococcal infection and in vitro. For 302 methicillin-susceptible strains the MIC at which 50% of isolates are inhibited (MIC50) and the MIC90 of WCK 771 were 0.03 and 0.03 microg/ml, respectively, and for 198 methicillin-resistant strains the MIC50 and the MIC90 were 0.5 and 1.0 microg/ml, respectively. All methicillin-susceptible staphylococci were quinolone susceptible, and almost all methicillin-resistant staphylococci were quinolone resistant. WCK 771 was more potent than moxifloxacin, trovafloxacin, levofloxacin, and ciprofloxacin and had potency comparable to that of clinafloxacin. Only WCK 771 and clinafloxacin demonstrated strong potencies against vancomycin-intermediate Staphylococcus aureus strains (MICs = 1 microg/ml). WCK 771 is not a substrate of the NorA pump, as evident from the lack of an effect of reserpine on the MICs and similar protective doses against infections caused by efflux-positive and -negative staphylococci. WCK 771 was effective by both the oral and the subcutaneous routes in mice infected intraperitoneally with quinolone-susceptible methicillin-susceptible S. aureus (MSSA) strains. For infections caused by quinolone-resistant methicillin-resistant S. aureus (MRSA) strains, the activity of WCK 771 administered subcutaneously was superior to those of trovafloxacin and sparfloxacin, with a 50% effective dose range of 27.8 to 46.8 mg/kg of body weight. The activity of WCK 771 was superior to those of moxifloxacin, vancomycin, and linezolid in a mouse cellulitis model of infection caused by one MSSA and two MRSA strains, with effective doses of 2.5 and 5 mg/kg for the MSSA strain and 10-fold higher effective doses for MRSA strains. WCK 771, like vancomycin and linezolid, eradicated MRSA from mouse liver, spleen, kidney, and lung when it was administered subcutaneously at a dose of 50 mg/kg for four doses. These studies have demonstrated the effectiveness of WCK 771, administered orally and parenterally, for the treatment of diverse staphylococcal infections in mice, including those caused by quinolone-resistant strains.


Assuntos
Antibacterianos/uso terapêutico , Fluoroquinolonas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Administração Oral , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Área Sob a Curva , Proteínas de Bactérias/genética , Celulite (Flegmão)/tratamento farmacológico , Celulite (Flegmão)/microbiologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacocinética , Fluoroquinolonas/farmacologia , Meia-Vida , Injeções Subcutâneas , Resistência a Meticilina , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Quinolizinas/farmacocinética , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Sepse/tratamento farmacológico , Sepse/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
15.
Antimicrob Agents Chemother ; 48(9): 3338-42, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15328094

RESUMO

The activity of WCK 771, an experimental quinolone developed to overcome quinolone resistance in staphylococci and other bacteria, was determined against quinolone-susceptible and -resistant Staphylococcus aureus and S. epidermidis. WCK 771 MICs for 50 and 90% of the strains tested (MIC(50) and MIC(90), respectively) were 0.008 and 0.015 microg/ml for S. aureus (n = 43) and 0.015 and 0.03 microg/ml for S. epidermidis (n = 44) for quinolone-susceptible isolates, compared to ciprofloxacin values of 0.12 and 0.25 microg/ml and 0.25 and 0.5 microg/ml, respectively. Values for levofloxacin were 0.12 and 0.25 microg/ml and 0.12 and 0.25 microg/ml, those for clinafloxacin were 0.015 and 0.03 microg/ml and 0.015 and 0.03 microg/ml, those for moxifloxacin were 0.03 and 0.06 microg/ml and 0.06 and 0.12 microg/ml, and those for gatifloxacin were 0.06 and 0.12 microg/ml and 0.12 and 0.25 microg/ml, respectively. The WCK 771 MIC(50) and MIC(90), respectively, were 0.5 and 1 microg/ml for both species of staphylococci (n = 73 for S. aureus, n = 70 for S. epidermidis) for isolates highly resistant to ciprofloxacin (MIC(50) and MIC(90), >32 and >32 microg/ml, respectively). Values for levofloxacin were 8 and 32 microg/ml and 8 and 32 microg/ml, those for clinafloxacin were 1 and 2 microg/ml and 0.5 and 2 microg/ml, those for moxifloxacin 4 and >4 microg/ml and 4 and >4 microg/ml, and those for gatifloxacin were 4 and >4 microg/ml and 2 and >4 microg/ml, respectively. WCK 771 and clinafloxacin demonstrated MICs of 1 microg/ml against three vancomycin-intermediate strains. WCK 771 showed concentration-independent killing for up to 24 h at 2, 4, and 8 times the MICs against quinolone-resistant staphylococci and was also bactericidal after 8 h for high-density inocula (10(8) CFU/ml) of quinolone-resistant strains at 5 microg/ml, whereas moxifloxacin at 7.5 microg/ml was bacteriostatic. WCK 771 was not a substrate of the NorA efflux pump as evident from the similar MICs against both an efflux-positive and an efflux-negative strain. Overall, WCK 771 was the most potent quinolone tested against the staphylococci tested, regardless of quinolone susceptibility.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Staphylococcus/efeitos dos fármacos , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana , Humanos , Cinética , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Quinolonas/farmacologia , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA