Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Viruses ; 15(6)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37376581

RESUMO

The global COVID-19 pandemic continues with continued cases worldwide and the emergence of new SARS-CoV-2 variants. In our study, we have developed novel tools with applications for screening antivirals, identifying virus-host dependencies, and characterizing viral variants. Using reverse genetics, we rescued SARS-CoV-2 Wuhan1 (D614G variant) wild type (WTFL) and reporter virus (NLucFL) using molecular BAC clones. The replication kinetics, plaque morphology, and titers were comparable between viruses rescued from molecular clones and a clinical isolate (VIDO-01 strain). Furthermore, the reporter SARS-CoV-2 NLucFL virus exhibited robust luciferase values over the time course of infection and was used to develop a rapid antiviral assay using remdesivir as proof-of-principle. In addition, as a tool to study lung-relevant virus-host interactions, we established novel human lung cell lines that support SARS-CoV-2 infection with high virus-induced cytopathology. Six lung cell lines (NCI-H23, A549, NCI-H1703, NCI-H520, NCI-H226, and HCC827) and HEK293T cells were transduced to stably express ACE2 and tested for their ability to support virus infection. A549ACE2 B1 and HEK293TACE2 A2 cell lines exhibited more than 70% virus-induced cell death, and a novel lung cell line, NCI-H23ACE2 A3, showed about ~99% cell death post-infection. These cell lines are ideal for assays relying on live-dead selection, such as CRISPR knockout and activation screens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiologia , Citologia , Pandemias , Genética Reversa , Células HEK293 , Pulmão , Antivirais/farmacologia
2.
Clin Cancer Res ; 29(14): 2686-2701, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36976175

RESUMO

PURPOSE: Accumulating analyses of pro-oncogenic molecular mechanisms triggered a rapid development of targeted cancer therapies. Although many of these treatments produce impressive initial responses, eventual resistance onset is practically unavoidable. One of the main approaches for preventing this refractory condition relies on the implementation of combination therapies. This includes dual-specificity reagents that affect both of their targets with a high level of selectivity. Unfortunately, selection of target combinations for these treatments is often confounded by limitations in our understanding of tumor biology. Here, we describe and validate a multipronged unbiased strategy for predicting optimal co-targets for bispecific therapeutics. EXPERIMENTAL DESIGN: Our strategy integrates ex vivo genome-wide loss-of-function screening, BioID interactome profiling, and gene expression analysis of patient data to identify the best fit co-targets. Final validation of selected target combinations is done in tumorsphere cultures and xenograft models. RESULTS: Integration of our experimental approaches unambiguously pointed toward EGFR and EPHA2 tyrosine kinase receptors as molecules of choice for co-targeting in multiple tumor types. Following this lead, we generated a human bispecific anti-EGFR/EPHA2 antibody that, as predicted, very effectively suppresses tumor growth compared with its prototype anti-EGFR therapeutic antibody, cetuximab. CONCLUSIONS: Our work not only presents a new bispecific antibody with a high potential for being developed into clinically relevant biologics, but more importantly, successfully validates a novel unbiased strategy for selecting biologically optimal target combinations. This is of a significant translational relevance, as such multifaceted unbiased approaches are likely to augment the development of effective combination therapies for cancer treatment. See related commentary by Kumar, p. 2570.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Cells ; 11(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883689

RESUMO

Neuroendocrine prostate cancer (NEPC) represents a highly aggressive form of prostate tumors. NEPC results from trans-differentiated castration-resistant prostate cancer (CRPC) with increasing evidence indicating that the incidence of NEPC often results from the adaptive response to androgen deprivation therapy. Recent studies have shown that a subset of NEPC exhibits overexpression of the MYCN oncogene along with the loss of tumor suppressing TP53 and RB1 activities. N-MYC is structurally disordered with no binding pockets available on its surface and so far, no clinically approved drug is available. We adopted a drug-repurposing strategy, screened ~1800 drug molecules, and identified fludarabine phosphate to preferentially inhibit the proliferation of N-MYC overexpressing NEPC cells by inducing reactive oxygen species (ROS). We also show that fludarabine phosphate affects N-MYC protein levels and N-MYC transcriptional targets in NEPC cells. Moreover, enhanced ROS production destabilizes N-MYC protein by inhibiting AKT signaling and is responsible for the reduced survival of NEPC cells and tumors. Our results indicate that increasing ROS production by the administration of fludarabine phosphate may represent an effective treatment option for patients with N-MYC overexpressing NEPC tumors.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Antagonistas de Androgênios/uso terapêutico , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Humanos , Masculino , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/uso terapêutico , Fosfato de Vidarabina/análogos & derivados
4.
Int J Angiol ; 31(1): 1-9, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35221846

RESUMO

This article deals with the role of AGE (advanced glycation end products)-RAGE (receptor for AGE) stress (AGE/sRAGE) in the development of coronary artery disease (CAD) in obesity. CAD is due to atherosclerosis in coronary artery. The serum/plasma levels of AGE and sRAGE are reduced, while AGE-RAGE stress and expression of RAGE are elevated in obese individuals. However, the levels of AGE are elevated in obese individuals with more than one metabolic syndrome. The increases in the AGE-RAGE stress would elevate the expression and production of atherogenic factors, including reactive oxygen species, nuclear factor-kappa B, cytokines, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial leukocyte adhesion molecules, monocyte chemoattractant protein-1, granulocyte-macrophage colony-stimulating factor, and growth factors. Low levels of sRAGE would also increase the atherogenic factors. The increases in the AGE-RAGE stress and decreases in the levels of sRAGE would induce development of atherosclerosis, leading to CAD. The therapeutic regimen for AGE-RAGE stress-induced CAD in obesity would include lowering of AGE intake, prevention of AGE formation, degradation of AGE in vivo, suppression of RAGE expression, blockade of AGE-RAGE interaction, downregulation of sRAGE expression, and use of antioxidants. In conclusion, the data suggest that AGE-RAGE stress is involved in the development of CAD in obesity, and the therapeutic interventions to reduce AGE-RAGE would be helpful in preventing, regressing, and slowing the progression of CAD in obesity.

5.
Methods Mol Biol ; 2381: 333-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34590285

RESUMO

Cancer is one of the leading causes of death and chromosomal instability (CIN) is a hallmark feature of cancer. CIN, a source of genetic variation in either altered chromosome number or structure contributes to tumor heterogeneity and has become a hot topic in recent years prominently for its role in therapeutic responses. Synthetic lethality and synthetic rescue based approaches, for example, advancing CRISPR-Cas9 platform, are emerging as a powerful strategy to identify new potential targets to selectively eradicate cancer cells. Unfortunately, only few of them are further explored therapeutically due to the difficulty in linking these targets to small molecules for pharmacological intervention. This, however, can be alleviated by the efforts to bring chemical, bioactivity, and genomic data together, as well as established computational approaches. In this chapter, we will discuss some of these advances, including established databases and in silico target-ligand prediction, with the aim to navigate through the synthetically available chemical space to the biologically targetable landscape, and eventually, to the chemical modeling of synthetic lethality and synthetic rescue interactions, that are of great clinical and pharmaceutical relevance and significance.


Assuntos
Mutações Sintéticas Letais , Instabilidade Cromossômica , Genômica , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
BMC Infect Dis ; 21(1): 655, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233649

RESUMO

BACKGROUND: Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. METHODS: We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student's t-test from at least four independent experiments. RESULTS: We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. CONCLUSIONS: We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy.


Assuntos
Apoptose/genética , Proteínas de Fluorescência Verde , Infecções por HIV , Macrófagos , RNA Interferente Pequeno , Linfócitos T CD4-Positivos/virologia , Estudo de Associação Genômica Ampla , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Linfócitos T
7.
Int J Angiol ; 29(3): 156-167, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041612

RESUMO

This review focuses on the role of advanced glycation end products (AGEs) and its cell receptor (RAGE) and soluble receptor (sRAGE) in the pathogenesis of chronic lower limb ischemia (CLLI) and its treatment. CLLI is associated with atherosclerosis in lower limb arteries. AGE-RAGE axis which comprises of AGE, RAGE, and sRAGE has been implicated in atherosclerosis and restenosis. It may be involved in atherosclerosis of lower limb resulting in CLLI. Serum and tissue levels of AGE, and expression of RAGE are elevated, and the serum levels of sRAGE are decreased in CLLI. It is known that AGE, and AGE-RAGE interaction increase the generation of various atherogenic factors including reactive oxygen species, nuclear factor-kappa B, cell adhesion molecules, cytokines, monocyte chemoattractant protein-1, granulocyte macrophage-colony stimulating factor, and growth factors. sRAGE acts as antiatherogenic factor because it reduces the generation of AGE-RAGE-induced atherogenic factors. Treatment of CLLI should be targeted at lowering AGE levels through reduction of dietary intake of AGE, prevention of AGE formation and degradation of AGE, suppression of RAGE expression, blockade of AGE-RAGE binding, elevation of sRAGE by upregulating sRAGE expression, and exogenous administration of sRAGE, and use of antioxidants. In conclusion, AGE-RAGE stress defined as a shift in the balance between stressors (AGE, RAGE) and antistressor (sRAGE) in favor of stressors, initiates the development of atherosclerosis resulting in CLLI. Treatment modalities would include reduction of AGE levels and RAGE expression, RAGE blocker, elevation of sRAGE, and antioxidants for prevention, regression, and slowing of progression of CLLI.

8.
Mol Syst Biol ; 13(12): 956, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196508

RESUMO

Metabolic alterations play an important role in cancer and yet, few metabolic cancer driver genes are known. Here we perform a combined genomic and metabolic modeling analysis searching for metabolic drivers of colorectal cancer. Our analysis predicts FUT9, which catalyzes the biosynthesis of Ley glycolipids, as a driver of advanced-stage colon cancer. Experimental testing reveals FUT9's complex dual role; while its knockdown enhances proliferation and migration in monolayers, it suppresses colon cancer cells expansion in tumorspheres and inhibits tumor development in a mouse xenograft models. These results suggest that FUT9's inhibition may attenuate tumor-initiating cells (TICs) that are known to dominate tumorspheres and early tumor growth, but promote bulk tumor cells. In agreement, we find that FUT9 silencing decreases the expression of the colorectal cancer TIC marker CD44 and the level of the OCT4 transcription factor, which is known to support cancer stemness. Beyond its current application, this work presents a novel genomic and metabolic modeling computational approach that can facilitate the systematic discovery of metabolic driver genes in other types of cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Biologia Computacional/métodos , Fucosiltransferases/metabolismo , Algoritmos , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Fucosiltransferases/genética , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Genômica , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA