Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 441(1): 114153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39013486

RESUMO

P-glycoprotein (P-gp) mediated multidrug resistance (MDR) is the leading cause of chemotherapy failure since it causes the efflux of chemotherapeutic drugs from the cancer cells. Solasodine, a steroidal alkaloid and oxaspiro compound, present in the Solanaceae family showed significant cytotoxic effects on various cancer cells. However, the effect of solasodine on reversing P-gp mediated drug resistance is still unknown. Primarily in this study, the integrative network pharmacology analysis found 71 common targets between solasodine and cancer MDR, among them NF-κB was found as a potential target. The results of immunofluorescence analysis showed that solasodine significantly inhibits NF-κB-p65 nuclear translocation which caused downregulated P-gp expression in KBChR-8-5 cells. Further, solasodine binds to the active sites of the TMD region of P-gp and inhibits P-gp transport activity. Moreover, solasodine significantly promotes doxorubicin intracellular accumulation in the drug resistant cells. Solasodine reduced the fold resistance and synergistically sensitized doxorubicin's therapeutic effects in KBChR-8-5 cells. Additionally, the solasodine and doxorubicin combination treatment increased the apoptotic cell populations and G2/M phase cell cycle arrest in KBChR-8-5 cells. The MDR tumor bearing xenograft mice showed tumor-suppressing characteristics and P-gp downregulation during the combination treatment of solasodine and doxorubicin. These results indicate that solasodine targets NF-κB signaling to downregulate P-gp overexpression, inhibit P-gp transport activity, and enhance chemosensitization in MDR cancer cells. Considering its multifaceted impact, solasodine represents a potent natural fourth-generation P-gp modulator for reversing MDR in cancer.


Assuntos
Apoptose , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , NF-kappa B , Transdução de Sinais , Alcaloides de Solanáceas , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Alcaloides de Solanáceas/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proliferação de Células/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
2.
Cell Biochem Funct ; 42(2): e3948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379216

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer chemotherapy. P-glycoprotein (P-gp) one of the ATP-binding cassette (ABC) transporters plays an important role in MDR. In this study, we examined the sensitizing property of andrographolide (Andro) to reverse MDR in the drug-resistant KBChR 8-5 cells. Andro exhibited increased cytotoxicity in a concentration-dependent manner in the P-gp overexpressing KBChR 8-5 cells. Furthermore, Andro showed synergistic interactions with PTX and DOX in this drug-resistant cells. Andro co-administration enhanced PTX- and DOX-induced cytotoxicity and reduced cell proliferation in the MDR cancer cells. Moreover, reactive oxygen species (ROS) were elevated with a decrease in the mitochondrial membrane potential (MMP) during Andro and chemotherapeutic drugs combination treatment in the drug-resistant cells. Furthermore, Andro and PTX-induced cell cycle arrest was observed in the drug-resistant cell. We also noticed that the expression of ABCB1 and AKT were downregulated during Andro (4 µM) treatment. Furthermore, Andro treatment enhanced the expression of caspase 3 and caspase 9 in the combinational groups that support the enhanced apoptotic cell death in drug-resistant cancer cells. Therefore, the results reveal that Andro plays a role in the reversal of P-gp-mediated MDR in KBChR 8-5 cells which might be due to regulating ABCB1/AKT signaling pathway.


Assuntos
Diterpenos , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Resistência a Múltiplos Medicamentos , Transdução de Sinais , Linhagem Celular Tumoral
3.
Cell Biochem Funct ; 41(8): 1305-1318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792847

RESUMO

The intrinsic redox status of cancer cells limits the efficacy of chemotherapeutic drugs. Auranofin, a Food and Drug Administration-approved gold-containing compound, documented with effective pharmacokinetics and safety profiles in humans, has recently been repurposed for anticancer activity. This study examined the paclitaxel-sensitizing effect of auranofin by targeting redox balance in the MDA-MB-231 and MCF-7 breast cancer cell lines. Auranofin treatment depletes the activities of superoxide dismutase, catalase, and glutathione peroxidase and alters the redox ratio in the breast cancer cell lines. Furthermore, it has been noticed that auranofin augmented paclitaxel-mediated cytotoxicity in a concentration-dependent manner in both MDA-MB-231 and MCF-7 cell lines. Moreover, auranofin increased the levels of intracellular reactive oxygen species (observed using 2, 7-diacetyl dichlorofluorescein diacetate staining) and subsequently altered the mitochondrial membrane potential (rhodamine-123 staining) in a concentration-dependent manner. Further, the expression of apoptotic marker p21 was found to be higher in auranofin plus paclitaxel-treated breast cancer cells compared to paclitaxel-alone treatment. Thus, the present results illustrate the chemosensitizing property of auranofin in MDA-MB-231 and MCF-7 breast cancer cell lines via oxidative metabolism. Therefore, auranofin could be considered a chemosensitizing agent during cancer chemotherapy.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Auranofina/farmacologia , Auranofina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Oxirredução , Linhagem Celular Tumoral , Células MCF-7 , Apoptose
4.
Drug Resist Updat ; 71: 101004, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660590

RESUMO

ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , NF-kappa B , Neoplasias/tratamento farmacológico , Neoplasias/genética , Resistência a Múltiplos Medicamentos , Transdução de Sinais
5.
J Biochem Mol Toxicol ; 37(9): e23421, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37345739

RESUMO

Multidrug resistance (MDR) remains a significant challenge in cancer chemotherapy due to the overexpression of ATP-binding cassette drug-efflux transporters, namely P-glycoprotein (P-gp)/ATP-binding cassette subfamily B member 1. In this study, derivatives of N-alkylated monoterpene indole alkaloids such as N-(para-bromobenzyl) (NBBT), N-(para-methylbenzyl) (NMBT), and N-(para-methoxyphenethyl) (NMPT) moieties were investigated for the reversal of P-gp-mediated MDR in drug-resistant KB colchicine-resistant 8-5 (KB-ChR-8-5) cells. Among the three indole alkaloid derivatives, the NBBT exhibited the highest P-gp inhibitory activity in a dose-dependent manner. Further, it significantly decreased P-gp overexpression by inactivating the nuclear translocation of the nuclear factor kappa B p-50 subunit. In the cell survival assay, doxorubicin showed 6.3-fold resistance (FR) in KB-ChR-8-5 cells compared with its parental KB-3-1 cells. However, NBBT significantly reduced doxorubicin FR to 1.7, 1.3, and 0.4 and showed strong synergism with doxorubicin for all the concentrations studied in the drug-resistant cells. Furthermore, NBBT and doxorubicin combination decreased the cellular migration and showed increased apoptotic incidence by downregulating Bcl-2, then activating BAX, caspase 3, and p53. The present findings suggest that NBBT could be a lead candidate for the reversal of P-gp- mediated multidrug resistance in cancer cells.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Colchicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Transportadores de Cassetes de Ligação de ATP , Alcaloides/farmacologia , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Trifosfato de Adenosina , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA