RESUMO
The quick widespread of the coronavirus and speedy upsurge in the tally of cases demand the fast development of effective drugs. The uridine-directed endoribonuclease activity of nonstructural protein 15 (Nsp15) of the coronavirus is responsible for the invasion of the host immune system. Therefore, developing potential inhibitors against Nsp15 is a promising strategy. In this concern, the in silico approach can play a significant role, as it is fast and cost-effective in comparison to the trial and error approaches of experimental investigations. In this study, six turmeric derivatives (curcuminoids) were chosen for in silico analysis. The molecular interactions, pharmacokinetics, and drug-likeness of all the curcuminoids were measured. Further, the stability of Nsp15-curcuminoids complexes was appraised by employing molecular dynamics (MD) simulations and MM-PBSA approaches. All the molecules were affirmed to have strong interactions and pharmacokinetic profile. The MD simulations data stated that the Nsp15-curcuminoids complexes were stable during simulations. All the curcuminoids showed stable and high binding affinity, and these curcuminoids could be admitted as potential modulators for Nsp15 inhibition.
Assuntos
COVID-19 , Proteínas não Estruturais Virais , Humanos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , SARS-CoV-2/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antivirais/farmacologiaRESUMO
MEK1 is an attractive target due to its role in selective extracellular-signal-regulated kinase phosphorylation, which plays a pivotal role in regulating cell proliferation. Another benefit of targeting the MEK protein is its unique hydrophobic pocket that can accommodate highly selective allosteric inhibitors. To date, various MEK1 inhibitors have reached clinical trials against several cancers, but they were discarded due to their severe toxicity and low efficacy. Thus, the development of allosteric inhibitors for MEK1 is the demand of the hour. In this in-silico study, molecular docking, long-term molecular dynamics (5 µs), and molecular mechanics Poisson-Boltzmann surface area analysis were undertaken to address the potential of quinolines as allosteric inhibitors. We selected four reference MEK1 inhibitors for the comparative analysis. The drug-likeness and toxicity of these molecules were also examined based on their ADMET and Toxicity Prediction by Komputer Assisted Technology profiles. The outcome of the analysis revealed that the quinolines (4m, 4o, 4s, and 4n) exhibited better stability and binding affinity while being nontoxic compared to reference inhibitors. We have reached the conclusion that these quinoline molecules could be checked by experimental studies to validate their use as allosteric inhibitors against MEK1.
Assuntos
Inibidores de Proteínas Quinases , Quinolinas , Sítio Alostérico , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologiaRESUMO
Dengue is a prominent viral disease transmitted by mosquitoes to humans that affects mainly tropical and subtropical countries worldwide. The global spread of dengue virus (DENV) is mainly occurred by Aedes aegypti and Aedes albopictus mosquitoes. The dengue virus serotypes-2 (DENV-2) is a widely prevalent serotype of DENV, that causes the hemorrhagic fever and bleeding in the mucosa, which can be fatal. In the life cycle of DENV-2, a structural capsid (DENV-2 C) protein forms the nucleocapsid assembly and bind to the viral progeny RNA. For DENV-2 maturation, the nucleocapsid is a vital component. We used virtual ligand screening to filter out the best in-house synthesized acridinedione analogs (DSPD molecules) that could efficiently bind to DENV-2 C protein. The molecular docking and dynamics simulations studies were performed to analyze the effect of DSPD molecules on DENV-2 C protein after binding. Our findings showed that DSPD molecules strongly interacted with DENV-2 C protein, as evident from molecular interactions and several time-dependent molecular dynamics-driven analyses. Moreover, this study was also supported by the thermodynamic binding free energy and steered molecular dynamics simulations. Therefore, we intend to suggest that the DSPD3 molecule could be used as a potential therapeutic molecule against dengue complications as compared to the cocrystallized inhibitor ST-148. However, further studies are required to demonstrate the ability of DSPD3 to induce DENV-2 C tetramer formation.