Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 298: 120764, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089604

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific symptoms and risk factors. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following TBIs. Repetitive mild TBIs (rmTBI) compound these issues, resulting in cumulative and long-term brain damage in the brain. In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI by employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI). Our hypothesis is that the effects of rmTBI are worsened in aged animals, with this group showing more pronounced alterations in brain connectivity and white matter structure. Utilizing the closed-head impact model of engineered rotational acceleration (CHIMERA) model, we conducted rmTBIs or sham (control) procedures on young (2.5-3-months-old) and aged (22-months-old) male and female mice to model high-risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposhigh-risking effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean diffusivity, radial diffusivity, axial diffusivity, and fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Neuroinflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in injured aged animals compared to sham aged. These findings offer insight into the interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBI.

2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328104

RESUMO

Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA