Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Cancer Res ; 29(14): 2602-2611, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36799931

RESUMO

PURPOSE: A single maintenance course of a PARP inhibitor (PARPi) improves progression-free survival (PFS) in germline BRCA1/2-mutant high-grade serous ovarian cancer (gBRCAm-HGSOC). The feasibility of a second maintenance course of PARPi was unknown. PATIENTS AND METHODS: Phase II trial with two entry points (EP1, EP2). Patients were recruited prior to rechallenge platinum. Patients with relapsed, gBRCAm-HGSOC were enrolled at EP1 if they were PARPi-naïve. Patients enrolled at EP2 had received their first course of olaparib prior to trial entry. EP1 patients were retreated with olaparib after RECIST complete/partial response (CR/PR) to platinum. EP2 patients were retreated with olaparib ± cediranib after RECIST CR/PR/stable disease to platinum and according to the platinum-free interval. Co-primary outcomes were the proportion of patients who received a second course of olaparib and the proportion who received olaparib retreatment for ≥6 months. Functional homologous recombination deficiency (HRD), somatic copy-number alteration (SCNA), and BRCAm reversions were investigated in tumor and liquid biopsies. RESULTS: Twenty-seven patients were treated (EP1 = 17, EP2 = 10), and 19 were evaluable. Twelve patients (63%) received a second course of olaparib and 4 received olaparib retreatment for ≥6 months. Common grade ≥2 adverse events during olaparib retreatment were anemia, nausea, and fatigue. No cases of MDS/AML occurred. Mean duration of olaparib treatment and retreatment differed (12.1 months vs. 4.4 months; P < 0.001). Functional HRD and SCNA did not predict PFS. A BRCA2 reversion mutation was detected in a post-olaparib liquid biopsy. CONCLUSIONS: A second course of olaparib can be safely administered to women with gBRCAm-HGSOC but is only modestly efficacious. See related commentary by Gonzalez-Ochoa and Oza, p. 2563.


Assuntos
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Antineoplásicos/uso terapêutico , Ftalazinas/efeitos adversos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade
2.
J Med Genet ; 59(4): 393-398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879512

RESUMO

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Assuntos
Exoma , Doenças Raras , Exoma/genética , Humanos , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma , Carga de Trabalho
3.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34715011

RESUMO

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , Linhagem
6.
Clin Genet ; 96(6): 515-520, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31441039

RESUMO

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Assuntos
Mutação de Sentido Incorreto/genética , Receptor Muscarínico M3/genética , Doenças da Bexiga Urinária/genética , Sequência de Bases , Família , Feminino , Homozigoto , Humanos , Malásia , Masculino
7.
Circ Res ; 124(4): 553-563, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30582441

RESUMO

RATIONALE: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.


Assuntos
Exoma , Taxa de Mutação , Tetralogia de Fallot/genética , Autoantígenos/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Receptor Notch1/genética , Transativadores/genética , Fatores de Transcrição/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
8.
Arch Dis Child ; 102(11): 1019-1029, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28468868

RESUMO

BACKGROUND: Inborn errors of metabolism (IEMs) underlie a substantial proportion of paediatric disease burden but their genetic diagnosis can be challenging using the traditional approaches. METHODS: We designed and validated a next-generation sequencing (NGS) panel of 226 IEM genes, created six overlapping phenotype-based subpanels and tested 102 individuals, who presented clinically with suspected childhood-onset IEMs. RESULTS: In 51/102 individuals, NGS fully or partially established the molecular cause or identified other actionable diagnoses. Causal mutations were identified significantly more frequently when the biochemical phenotype suggested a specific IEM or a group of IEMs (p<0.0001), demonstrating the pivotal role of prior biochemical testing in guiding NGS analysis. The NGS panel helped to avoid further invasive, hazardous, lengthy or expensive investigations in 69% individuals (p<0.0001). Additional functional testing due to novel or unexpected findings had to be undertaken in only 3% of subjects, demonstrating that the use of NGS does not significantly increase the burden of subsequent follow-up testing. Even where a molecular diagnosis could not be achieved, NGS-based approach assisted in the management and counselling by reducing the likelihood of a high-penetrant genetic cause. CONCLUSION: NGS has significant clinical utility for the diagnosis of IEMs. Biochemical testing and NGS analysis play complementary roles in the diagnosis of IEMs. Incorporating NGS into the diagnostic algorithm of IEMs can improve the accuracy of diagnosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Erros Inatos do Metabolismo/diagnóstico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/genética , Adulto Jovem
9.
Am J Med Genet A ; 173(4): 1051-1055, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328138

RESUMO

PTRH2 is an evolutionarily highly conserved mitochondrial protein that belongs to a family of peptidyl-tRNA hydrolases. Recently, patients from two consanguineous families with mutations in the PTRH2 gene were reported. Global developmental delay associated with microcephaly, growth retardation, progressive ataxia, distal muscle weakness with ankle contractures, demyelinating sensorimotor neuropathy, and sensorineural hearing loss were present in all patients, while facial dysmorphism with widely spaced eyes, exotropia, thin upper lip, proximally placed thumbs, and deformities of the fingers and toes were present in some individuals. Here, we report a new family with three siblings affected by sensorineural hearing loss and peripheral neuropathy. Autozygosity mapping followed by exome sequencing identified a previously reported homozygous missense mutation in PTRH2 (c.254A>C; p.(Gln85Pro)). Sanger sequencing confirmed that the variant segregated with the phenotype. In contrast to the previously reported patient, the affected siblings had normal intelligence, milder microcephaly, delayed puberty, myopia, and moderate insensitivity to pain. Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants.


Assuntos
Hidrolases de Éster Carboxílico/genética , Perda Auditiva Neurossensorial/genética , Homozigoto , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso Periférico/genética , Adolescente , Sequência de Bases , Consanguinidade , Progressão da Doença , Feminino , Expressão Gênica , Heterogeneidade Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Miopia/fisiopatologia , Insensibilidade Congênita à Dor/fisiopatologia , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fenótipo , Puberdade Tardia/fisiopatologia , Irmãos
11.
Orphanet J Rare Dis ; 11(1): 125, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27628848

RESUMO

BACKGROUND: Although the majority of small in-frame insertions/deletions (indels) has no/little affect on protein function, a small subset of these changes has been causally associated with genetic disorders. Notably, the molecular mechanisms and frequency by which they give rise to disease phenotypes remain largely unknown. The aim of this study is to provide insights into the role of in-frame indels (≤21 nucleotides) in two genetically heterogeneous eye disorders. RESULTS: One hundred eighty-one probands with childhood cataracts and 486 probands with retinal dystrophy underwent multigene panel testing in a clinical diagnostic laboratory. In-frame indels were collected and evaluated both clinically and in silico. Variants that could be modeled in the context of protein structure were identified and analysed using integrative structural modeling. Overall, 55 small in-frame indels were detected in 112 of 667 probands (16.8 %); 17 of these changes were novel to this study and 18 variants were reported clinically. A reliable model of the corresponding protein sequence could be generated for 8 variants. Structural modeling indicated a diverse range of molecular mechanisms of disease including disruption of secondary and tertiary protein structure and alteration of protein-DNA binding sites. CONCLUSIONS: In childhood cataract and retinal dystrophy subjects, one small in-frame indel is clinically reported in every ~37 individuals tested. The clinical utility of computational tools evaluating these changes increases when the full complexity of the involved molecular mechanisms is embraced.


Assuntos
Oftalmopatias/genética , Mutação INDEL/genética , Fases de Leitura/genética , Catarata/genética , Biologia Computacional , Humanos , Distrofias Retinianas/genética
12.
Nat Genet ; 48(10): 1185-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571260

RESUMO

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Calcinose/genética , Calcinose/patologia , Linhagem Celular , Doenças de Pequenos Vasos Cerebrais/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 17 , Estudos de Coortes , Cistos/genética , Cistos/patologia , Exoma , Feminino , Ligação Genética , Genoma Humano , Humanos , Lactente , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Adulto Jovem
13.
J Hum Genet ; 60(12): 781-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377242

RESUMO

Dubowitz syndrome is a presumed autosomal recessive disorder characterized by multiple congenital abnormalities: microcephaly, learning and developmental delay, growth failure, and a predisposition to allergies and eczema. There have been more than 150 individuals reported to have this diagnosis, but no unifying genetic alteration has been identified indicating genetic heterogeneity. We report on a pair of monozygotic twins diagnosed clinically with Dubowitz syndrome by Professor Dubowitz over 30 years ago and identified to have a de novo heterozygous 3.2-Mb deletion at 19q13.11q13.12. Exome sequencing did not identify either a putative pathogenic variant on the trans allele supporting recessive inheritance or any other causative sequence variants. Comparison of the phenotype in our cases shows considerable overlap with the 19q13.11 microdeletion syndrome, suggesting that a subset of individuals diagnosed with Dubowitz syndrome may be due to deletions at 19q13. Our finding further reinforces the genetic and phenotypic heterogeneity of Dubowitz syndrome.


Assuntos
Alelos , Sequência de Bases , Cromossomos Humanos Par 19/genética , Eczema/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Deleção de Sequência , Gêmeos Monozigóticos/genética , Adulto , Eczema/patologia , Fácies , Transtornos do Crescimento/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia
14.
J Hum Genet ; 60(4): 199-202, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589041

RESUMO

Agnathia-otocephaly complex is a malformation characterized by absent/hypoplastic mandible and abnormally positioned ears. Mutations in two genes, PRRX1 and OTX2, have been described in a small number of families with this disorder. We performed clinical and genetic testing in an additional family. The proband is a healthy female with a complicated pregnancy history that includes two offspring diagnosed with agnathia-otocephaly during prenatal ultrasound scans. Exome sequencing was performed in fetal DNA from one of these two offspring revealing a heterozygous duplication in OTX2: c.271_273dupCAG, p.(Gln91dup). This change leads to the insertion of a glutamine within the OTX2 homeodomain region, and is predicted to alter this signaling molecule's ability to interact with DNA. The same variant was also identified in the proband's clinically unaffected 38-year-old husband and their 9-year-old daughter, who presented with a small mandible, normal ears and velopharyngeal insufficiency due to a short hemi-palate. This unusual presentation of OTX2-related disease suggests that OTX2 might have a role in palatal hypoplasia cases. A previously unreported OTX2 variant associated with extreme intrafamilial variability is described and the utility of exome sequencing as a tool to confirm the diagnosis of agnathia-otocephaly and to inform the reproductive decisions of affected families is highlighted.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Gênica , Fatores de Transcrição Otx/genética , Fases de Leitura , Insuficiência Velofaríngea/genética , Anormalidades Múltiplas/diagnóstico , Adulto , Criança , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação , Fatores de Transcrição Otx/química , Linhagem , Fenótipo , Conformação Proteica , Insuficiência Velofaríngea/diagnóstico
15.
Neurology ; 84(2): 141-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25480913

RESUMO

OBJECTIVES: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. METHODS: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. RESULTS: We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation-positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. CONCLUSIONS: Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified.


Assuntos
Neurilemoma/genética , Neurofibromatoses/genética , Neuroma Acústico/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Análise de Sequência de DNA
16.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434003

RESUMO

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Alelos , Pré-Escolar , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Exossomos/genética , Fácies , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Genes Reporter , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo
17.
J Clin Oncol ; 32(36): 4155-61, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25403219

RESUMO

PURPOSE: Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. METHODS: We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. RESULTS: A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. CONCLUSION: We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome.


Assuntos
Síndrome do Nevo Basocelular/genética , Neoplasias Cerebelares/genética , Mutação em Linhagem Germinativa , Meduloblastoma/genética , Receptores de Superfície Celular/genética , Proteínas Repressoras/genética , Neoplasias Cerebelares/etiologia , Humanos , Imageamento por Ressonância Magnética , Meduloblastoma/etiologia , Receptores Patched , Receptor Patched-1 , Risco
18.
Lancet Neurol ; 13(1): 44-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291220

RESUMO

BACKGROUND: Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. METHODS: Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. FINDINGS: 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. INTERPRETATION: Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. FUNDING: US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


Assuntos
Proteínas de Transporte/genética , Anormalidades Craniofaciais/genética , Exoma/genética , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Internacionalidade , Unhas Malformadas/genética , Fenótipo , Análise de Sequência de DNA/métodos , Adolescente , Proteínas de Transporte/química , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico , Feminino , Proteínas Ativadoras de GTPase , Deformidades Congênitas da Mão/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Proteínas de Membrana , Unhas Malformadas/diagnóstico , Proteínas do Tecido Nervoso , Adulto Jovem
19.
Arthritis Rheum ; 65(8): 2161-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666743

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS: We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS: We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION: Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


Assuntos
Apoptose , Linfócitos B/patologia , Lúpus Eritematoso Sistêmico/enzimologia , Lúpus Eritematoso Sistêmico/genética , Mutação de Sentido Incorreto , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proliferação de Células , Criança , Feminino , Variação Genética , Homozigoto , Humanos , Hiperplasia , Tolerância Imunológica , Lúpus Eritematoso Sistêmico/patologia , Masculino , Polimorfismo de Nucleotídeo Único , Proteína Quinase C-delta/imunologia , Adulto Jovem
20.
Nat Genet ; 45(3): 295-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377182

RESUMO

One-third of all primary central nervous system tumors in adults are meningiomas. Rarely, meningiomas occur at multiple sites, usually occurring in individuals with type 2 neurofibromatosis (NF2). We sequenced the exomes of three unrelated individuals with familial multiple spinal meningiomas without NF2 mutations. We identified two individuals with heterozygous loss-of-function mutations in the SWI/SNF chromatin-remodeling complex subunit gene SMARCE1. Sequencing of SMARCE1 in six further individuals with spinal meningiomas identified two additional heterozygous loss-of-function mutations. Tumors from individuals with SMARCE1 mutations were of clear-cell histological subtype, and all had loss of SMARCE1 protein, consistent with a tumor suppressor mechanism. Our findings identify multiple-spinal-meningioma disease as a new discrete entity and establish a key role for the SWI/SNF complex in the pathogenesis of both meningiomas and tumors with clear-cell histology.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Neoplasias Meníngeas , Meningioma , Mutação , Adolescente , Adulto , Sequência de Bases , Proteínas Cromossômicas não Histona/metabolismo , Deleção Cromossômica , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Perda de Heterozigosidade , Masculino , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurofibromatose 2/genética , Neurofibromatose 2/metabolismo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA