Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Contemp Dent Pract ; 24(11): 891-894, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238278

RESUMO

AIM: The current study aimed to determine the impact of three different disinfectants on the surface roughness and color stability of heat-cure acrylic denture material. MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days. RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13). CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group. CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.


Assuntos
Clorexidina/análogos & derivados , Desinfetantes , Hipoclorito de Sódio , Glutaral/farmacologia , Hipoclorito de Sódio/farmacologia , Resinas Acrílicas , Temperatura Alta , Polimetil Metacrilato , Dentaduras , Propriedades de Superfície , Bases de Dentadura , Teste de Materiais , Cor
2.
J Contemp Dent Pract ; 24(8): 566-569, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193179

RESUMO

AIM: The purpose of the current study was to evaluate Titanium and Bioneck TRI implant-abutment interfaces for microgaps and microbiological leakage. MATERIALS AND METHODS: In this in vitro experiment, 40 dental implants were split into two groups, each of which had 20 samples. Group I: Titanium dental implant, group II: Bioneck TRI. E. coli strain was cultivated in MacConkey media for 24 hours at 37°C. To achieve a bacterial concentration of 1 × 108 colony-forming units per mL at 0.5 scale of MacFarland, the brain-heart infusion (BHI) broth was injected. The CFU count was done to evaluate the microbial leakage. The parts were first submerged, carefully cleaned in an ultrasonic bath, and then installed using a digital torque meter with a 20 N/cm preload. These were attached to a stub of approximately 13 mm using carbon tape, and the microgap evaluation was performed using a scanning electron microscope at a magnification of x1000. Unpaired t-test was used for the calculated data's statistical analysis. The p-value less than 0.05 was considered as statistically significant. RESULTS: The maximum microbial leakage was in Bioneck TRI implants (10000 ± 0.01) followed by Titanium dental implants (8.60 ± 3.16). The mean difference was 9991.40 and there was a statistically significant difference found between the two different groups. The maximum microgap was found in the Bioneck TRI implants (9.72 ± 0.96), followed by Titanium dental implant (6.82 ± 1.10) and there was a statistically significant difference was found between the groups (p < 0.001). CONCLUSION: The present study concluded that the microorganisms can infiltrate the microgap between the implant and abutment interface. When compared with Titanium dental implants, Bioneck TRI implants showed significantly higher levels of microbial leakage. CLINICAL SIGNIFICANCE: A microgap between the implant and abutment connection might operate as a bacterial source, may produce inflammation, even osseointegration in danger, and subsequently alter clinical and histological parameters. Therefore, having an understanding of the compatible components aids in overcoming treatment planning challenges.


Assuntos
Implantes Dentários , Escherichia coli , Titânio , Projetos de Pesquisa , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA