RESUMO
OBJECTIVES: (1) To quantify hospital-level variation in use of neuroimaging to screen for intracranial injury (ICI) among infants without overt signs or symptoms of head trauma undergoing subspecialty evaluations for physical abuse; (2) to assess for disproportionality in neuroimaging based on race/ethnicity and insurance type. METHODS: This was a cross-sectional study of infants age <12 months receiving subspecialty child abuse evaluations from 02/2021 - 12/2022 at 10 sites in CAPNET, a multicenter child abuse research network. Infants were included if they underwent a skeletal survey and lacked overt signs of possible ICI or blunt head injury. Outcome was completion of neuroimaging (computed tomography [CT] or magnetic resonance imaging [MRI]). Multivariable logistic regression was used to assess associations between demographic, clinical, and hospital factors with neuroimaging use. RESULTS: Of 1,114 infants, 746 (67%) underwent neuroimaging ranging from 51% to 80% across CAPNET hospitals. In multivariable analysis, young age, presence of rib fracture(s), and site had significant associations with neuroimaging. Insurance type and race/ethnicity did not contribute significantly to the model. After adjustment for case-mix, there was significant variation across hospitals, with neuroimaging use ranging from 51% (95% CI: 43%, 59%) to 79% (95% CI 71%, 88%) CONCLUSION: We identified significant variation in neuroimaging use across CAPNET hospitals, highlighting the need for guideline development and care standardization during the care of infants undergoing abuse evaluations.
RESUMO
Cortically-based brain tumors in children constitute a unique set of tumors with variably aggressive biological behavior. As radiologists play an integral role on the multidisciplinary medical team, a clinically useful and easy-to-follow flowchart for the differential diagnoses of these complex brain tumors is essential.This proposed algorithm tree provides the latest insights into the typical imaging characteristics and epidemiologic data that differentiate the tumor entities, taking into perspective the 2021 World Health Organization's classification and highlighting classic as well as newly identified pathologic subtypes using current molecular understanding.ABBREVIATIONS: Astroblastoma=AB) Angiocentric glioma (AG) Atypical teratoid rhabdoid tumor (ATRT) Central Nervous System tumor (CNS) CNS neuroblastoma FOXR2-activated (NB-FOXR2) Desmoplastic infantile glioma/astrocytoma (DIG/DIA) Diffuse hemispheric glioma, H3 G34-mutant (DHG) Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC) Dysembryoplastic neuroepithelial tumor (DNET) Embryonal Tumors with Multilayered Rosettes (ETMR) Ependymoma (EP) Focal cortical dysplasia (FCD) Ganglioglioma/gangliocytoma (GG) Infant-type hemispheric glioma (IHG) Intracranial pressure (ICP) Long-term epilepsy-associated tumors (LEATs) Pediatric diffuse low-grade gliomas (pLGG) MR spectroscopy (MRS) Multinodular and vacuolating neuronal tumor (MVNT) Overall survival (OS) Pediatric diffuse high-grade gliomas (pHGG).
RESUMO
BACKGROUND AND PURPOSE: Hemangioblastoma is a rare vascular tumor that occurs within the central nervous system in children. Differentiating hemangioblastoma from other posterior fossa tumors can be challenging on imaging, and preoperative diagnosis can change the neurosurgical approach. We hypothesize that a "lightbulb sign" on the arterial spin-labeling (ASL) sequence (diffuse homogeneous intense hyperperfusion within the solid component of the tumor) will provide additional imaging finding to differentiate hemangioblastoma from other posterior fossa tumors. MATERIALS AND METHODS: In this retrospective comparative observational study, we only included pathology-proved cases of hemangioblastoma, while the control group consisted of other randomly selected pathology-proved posterior fossa tumors from January 2022 to January 2024. Two blinded neuroradiologists analyzed all applicable MRI sequences, including ASL sequence if available. ASL was analyzed for the lightbulb sign. Disagreements between the radiologists were resolved by a third pediatric neuroradiologist. χ2 and Fisher exact test were used to analyze the data. RESULTS: Ninety-five patients were enrolled in the study; 57 (60%) were boys. The median age at diagnosis was 8 years old (interquartile range: 3-14). Of the enrolled patients, 8 had hemangioblastoma, and 87 had other posterior fossa tumors, including medulloblastoma (n = 31), pilocytic astrocytoma (n = 23), posterior fossa ependymoma type A (n = 16), and other tumors (n = 17). The comparison of hemangioblastoma versus nonhemangioblastoma showed that peripheral edema (P = .02) and T2-flow void (P = .02) favor hemangioblastoma, whereas reduced diffusion (low ADC) (P = .002) and ventricular system extension (P = .001) favor nonhemangioblastoma tumors. Forty-two cases also had ASL perfusion sequences. While high perfusion favors hemangioblastoma (P = .03), the lightbulb sign shows a complete distinction because all the ASL series of hemangioblastoma cases (n = 4) showed the lightbulb sign, whereas none of the nonhemangioblastoma cases (n = 38) showed the sign (P < .001). CONCLUSIONS: Lightbulb-like intense and homogeneous hyperperfusion patterns on ASL are helpful in diagnosing posterior fossa hemangioblastoma in children.
Assuntos
Hemangioblastoma , Neoplasias Infratentoriais , Marcadores de Spin , Humanos , Hemangioblastoma/diagnóstico por imagem , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Estudos Retrospectivos , Neoplasias Infratentoriais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Diagnóstico Diferencial , Meduloblastoma/diagnóstico por imagemRESUMO
Monogenic cerebral vasculopathy is a rare but progressively recognizable cause of pediatric cerebral vasculopathy manifesting as early as fetal life. These monogenic cerebral vasculopathies can be silent or manifest variably as fetal or neonatal distress, neurologic deficit, developmental delay, cerebral palsy, seizures, or stroke. The radiologic findings can be nonspecific, but the presence of disease-specific cerebral and extracerebral imaging features can point to a diagnosis and guide genetic testing, allowing targeted treatment. The authors review the existing literature describing the frequently encountered and rare monogenic cerebral vascular disorders affecting young patients and describe the relevant pathogenesis, with an attempt to categorize them based on the defective step in vascular homeostasis and/or signaling pathways and characteristic cerebrovascular imaging findings. The authors also highlight the role of imaging and a dedicated imaging protocol in identification of distinct cerebral and extracerebral findings crucial in the diagnostic algorithm and selection of genetic testing. Early and precise recognition of these entities allows timely intervention, preventing or delaying complications and thereby improving quality of life. It is also imperative to identify the specific pathogenic variant and pattern of inheritance for satisfactory genetic counseling and care of at-risk family members. Last, the authors present an image-based approach to these young-onset monogenic cerebral vasculopathies that is guided by the size and predominant radiologic characteristics of the affected vessel with reasonable overlap. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Assuntos
Qualidade de Vida , Acidente Vascular Cerebral , Criança , Humanos , Diagnóstico por Imagem , Testes GenéticosRESUMO
This paper will review how artificial intelligence (AI) will play an increasingly important role in pediatric neuroradiology in the future. A safe, transparent, and human-centric AI is needed to tackle the quadruple aim of improved health outcomes, enhanced patient and family experience, reduced costs, and improved well-being of the healthcare team in pediatric neuroradiology. Equity, diversity and inclusion, data safety, and access to care will need to always be considered. In the next decade, AI algorithms are expected to play an increasingly important role in access to care, workflow management, abnormality detection, classification, response prediction, prognostication, report generation, as well as in the patient and family experience in pediatric neuroradiology. Also, AI algorithms will likely play a role in recognizing and flagging rare diseases and in pattern recognition to identify previously unknown disorders. While AI algorithms will play an important role, humans will not only need to be in the loop, but in the center of pediatric neuroimaging. AI development and deployment will need to be closely watched and monitored by experts in the field. Patient and data safety need to be at the forefront, and the risks of a dependency on technology will need to be contained. The applications and implications of AI in pediatric neuroradiology will differ from adult neuroradiology.
Assuntos
Inteligência Artificial , Previsões , Pediatria , Humanos , Criança , Pediatria/métodos , Neuroimagem/métodos , NeurorradiografiaRESUMO
Gliomas in the pediatric population are targeted with immune-modulating therapies. The gold standard imaging modality for diagnosis and monitoring treatment response is magnetic resonance imaging (MRI); however, the complex post-therapy-induced changes can make treatment response assessment difficult. These include radiation necrosis, pseudoresponse, and pseudoprogression, as well as more complex responses in the setting of immunotherapy. We report a case of an 11-year-old male with a supratentorial astrocytoma (WHO grade 3) that underwent treatment with immunotherapy. There was a clinical concern for progression due to increased fluid-attenuated inversion recovery (FLAIR) hyperintensity at the site of the primary neoplasm during immunotherapy. However, the Sodium (23Na) MRI continued demonstrating decreased total sodium concentrations, supporting pseudoprogression over true progression, which was confirmed clinicaly. This case reports the capability of 23Na MRI to differentiate between progression, recurrence, and other posttreatment changes.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Masculino , Humanos , Criança , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Astrocitoma/diagnóstico por imagem , Astrocitoma/terapia , Imageamento por Ressonância Magnética/métodos , ImunoterapiaRESUMO
The Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group includes neuroradiologists, neuro-oncologists, neurosurgeons, radiation oncologists, and clinicians in various additional specialties. This review paper will summarize the imaging recommendations from RAPNO for the six RAPNO publications to date covering pediatric low-grade glioma, pediatric high-grade glioma, medulloblastoma and other leptomeningeal seeding tumors, diffuse intrinsic pontine glioma, ependymoma, and craniopharyngioma.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Diagnóstico por Imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapiaRESUMO
INTRODUCTION: To evaluate the ability of artificial intelligence (AI) software to quantify proptosis for identifying patients who need surgical drainage. METHODS: We pursued a retrospective study including 56 subjects with a clinical diagnosis of subperiosteal orbital abscess (SPOA) secondary to sinusitis at a tertiary pediatric hospital from 2002 to 2016. AI computer software was developed to perform 3D visualization and quantitative assessment of proptosis from computed tomography (CT) images acquired at the time of hospital admission. The AI software automatically computed linear and volume metrics of proptosis to provide more practice-consistent and informative measures. Two experienced physicians independently measured proptosis using the interzygomatic line method on axial CT images. The AI software and physician proptosis assessments were evaluated for association with eventual treatment procedures as standalone markers and in combination with the standard predictors. RESULTS: To treat the SPOA, 31 of 56 (55%) children underwent surgical intervention, including 18 early surgeries (performed within 24 h of admission), and 25 (45%) were managed medically. The physician measurements of proptosis were strongly correlated (Spearman r = 0.89, 95% CI 0.82-0.93) with 95% limits of agreement of ± 1.8 mm. The AI linear measurement was on average 1.2 mm larger (p = 0.007) and only moderately correlated with the average physicians' measurements (r = 0.53, 95% CI 0.31-0.69). Increased proptosis of both AI volumetric and linear measurements were moderately predictive of surgery (AUCs of 0.79, 95% CI 0.68-0.91, and 0.78, 95% CI 0.65-0.90, respectively) with the average physician measurement being poorly to fairly predictive (AUC of 0.70, 95% CI 0.56-0.84). The AI proptosis measures were also significantly greater in the early as compared to the late surgery groups (p = 0.02, and p = 0.04, respectively). The surgical and medical groups showed a substantial difference in the abscess volume (p < 0.001). CONCLUSION: AI proptosis measures significantly differed from physician assessments and showed a good overall ability to predict the eventual treatment. The volumetric AI proptosis measurement significantly improved the ability to predict the likelihood of surgery compared to abscess volume alone. Further studies are needed to better characterize and incorporate the AI proptosis measurements for assisting in clinical decision-making.
RESUMO
BACKGROUND: Radiomics is the process of converting radiological images into high-dimensional data that may be used to create machine learning models capable of predicting clinical outcomes, such as disease progression, treatment response and survival. Pediatric central nervous system (CNS) tumors differ from adult CNS tumors in terms of their tissue morphology, molecular subtype and textural features. We set out to appraise the current impact of this technology in clinical pediatric neuro-oncology practice. OBJECTIVES: The aims of the study were to assess radiomics' current impact and potential utility in pediatric neuro-oncology practice; to evaluate the accuracy of radiomics-based machine learning models and compare this to the current standard which is stereotactic brain biopsy; and finally, to identify the current limitations of radiomics applications in pediatric neuro-oncology. MATERIALS AND METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards, a systematic review of the literature was carried out with protocol number CRD42022372485 in the prospective register of systematic reviews (PROSPERO). We performed a systematic literature search via PubMed, Embase, Web of Science and Google Scholar. Studies involving CNS tumors, studies that utilized radiomics and studies involving pediatric patients (age<18 years) were included. Several parameters were collected including imaging modality, sample size, image segmentation technique, machine learning model used, tumor type, radiomics utility, model accuracy, radiomics quality score and reported limitations. RESULTS: The study included a total of 17 articles that underwent full-text review, after excluding duplicates, conference abstracts and studies that did not meet the inclusion criteria. The most commonly used machine learning models were support vector machines (n=7) and random forests (n=6), with an area under the curve (AUC) range of 0.60-0.94. The included studies investigated several pediatric CNS tumors, with ependymoma and medulloblastoma being the most frequently studied. Radiomics was primarily used for lesion identification, molecular subtyping, survival prognostication and metastasis prediction in pediatric neuro-oncology. The low sample size of studies was a commonly reported limitation. CONCLUSION: The current state of radiomics in pediatric neuro-oncology is promising, in terms of distinguishing between tumor types; however, its utility in response assessment requires further evaluation which, given the relatively low number of pediatric tumors, calls for multicenter collaboration.
Assuntos
Aprendizado de Máquina , Radiologia , Adulto , Humanos , Criança , Adolescente , Área Sob a Curva , Biópsia , Progressão da Doença , Estudos Multicêntricos como AssuntoRESUMO
Imaging in hematopoietic stem cell transplantation patients is not targeted at evaluating the transplant per se. Rather, imaging is largely confined to evaluating peri-procedural and post-procedural complications. Alternatively, imaging may be performed to establish a baseline study for comparison should the patient develop certain post-procedural complications. This article looks to describe the various imaging modalities available with recommendations for which imaging study should be performed in specific complications. We also provide select imaging protocols for different indications and modalities for the purpose of establishing a set minimal standard for imaging in these complex patients.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Ressonância de Plasmônio de Superfície , Criança , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Oncologia , TransplantadosRESUMO
Tumors of the central nervous system are the most common solid malignancies in children and the most common cause of pediatric cancer-related mortality. Imaging plays a central role in diagnosis, staging, treatment planning, and response assessment of pediatric brain tumors. However, the substantial variability in brain tumor imaging protocols across institutions leads to variability in patient risk stratification and treatment decisions, and complicates comparisons of clinical trial results. This White Paper provides consensus-based imaging recommendations for evaluating pediatric patients with primary brain tumors. The proposed brain magnetic resonance imaging protocol recommendations balance advancements in imaging techniques with the practicality of deployment across most imaging centers.
Assuntos
Neoplasias Encefálicas , Ressonância de Plasmônio de Superfície , Humanos , Criança , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Sistema Nervoso Central/patologia , Encéfalo/patologiaRESUMO
We present a case of a 7-year-old boy who was presented with a small medial subperiosteal orbital abscess (SPOA) and trace superior phlegmon and who was initially treated with intravenous (IV) antibiotics, corticosteroids, and observation. After clinical resolution and discharge, the patient returned with superior migration of his abscess requiring surgical drainage. Potential factors leading to readmission are discussed, including the anti-inflammatory and immunosuppressant effects of steroids, and presence of early surgical indictors such as bony dehiscence and proptosis. This case highlights the need for careful consideration of initial imaging and presence of a non-medial phlegmon prior to initiation of steroids.
Assuntos
Celulite Orbitária , Doenças Orbitárias , Masculino , Humanos , Criança , Abscesso/tratamento farmacológico , Antibacterianos/uso terapêutico , Celulite Orbitária/tratamento farmacológico , Tomografia Computadorizada por Raios X , Esteroides/uso terapêutico , Doenças Orbitárias/tratamento farmacológicoRESUMO
Neuroblastoma is the most common extracranial solid neoplasm in children. This manuscript provides consensus-based imaging recommendations for pediatric neuroblastoma patients at diagnosis and during follow-up.
Assuntos
Neuroblastoma , Ressonância de Plasmônio de Superfície , Criança , Humanos , Neuroblastoma/patologia , Diagnóstico por Imagem , Estadiamento de NeoplasiasRESUMO
Pediatric stroke encompasses different causes, clinical presentations, and associated conditions across ages. Although it is relatively uncommon, pediatric stroke presents with poor short- and long-term outcomes in many cases. Because of a wide range of overlapping presenting symptoms between pediatric stroke and other more common conditions, such as migraine and seizures, stroke diagnosis can be challenging or delayed in children. When combined with a comprehensive medical history and physical examination, neuroimaging plays a crucial role in diagnosing stroke and differentiating stroke mimics. This review highlights the current neuroimaging workup for diagnosing pediatric stroke in the emergency department, describes advantages and disadvantages of different imaging modalities, highlights disorders that predispose children to infarct or hemorrhage, and presents an overview of stroke mimics. Key differences in the initial approach to suspected stroke between children and adults are also discussed.
Assuntos
Transtornos de Enxaqueca , Radiologia , Acidente Vascular Cerebral , Adulto , Criança , Humanos , Diagnóstico Diferencial , Acidente Vascular Cerebral/etiologia , Convulsões , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/diagnóstico , Serviço Hospitalar de EmergênciaRESUMO
Pediatric spinal cord morphometry has been relatively understudied because of non-optimal image quality due to the difficulty of spine imaging, rarity of post-mortem analysis, motion artifacts, and pediatric MR imaging research focus on understanding spinal injury or pathology. The pediatric brain has been comparatively well-studied with white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) differences observed with age and gender. Therefore, a greater understanding of pediatric cervical and thoracic spinal cord morphometry would be beneficial for developing clinically relevant cord growth models. We focused on retrospectively characterizing cervical and thoracic spinal cord growth and morphometry changes in a healthy pediatric population. High resolution multi-echo gradient echo (mFFE) images were acquired from pediatric spinal cord scans from 63 patients (mean: 9.24 years, range: 0.83-17.67 years). The mFFE scans were then registered to the template space for uniform viewing and analysis by using a customized semi-automatic processing pipeline involving Spinal Cord Toolbox (SCT). Jacobian control determinants were calculated, and subsequent WM, GM, dorsal column, lateral funiculi, and ventral funiculi scalar averaging was conducted. Random effects models were used to model age-related Jacobian scalar differences. Observing the growth of cord matter by patient age and vertebral level suggests that the upper cervical spinal cord, specifically C2-C3, and mid-thoracic spinal cord, T3-T8, grow faster than other cervical levels and thoracic levels, respectively. This knowledge will facilitate clinical decision making when considering spine interventions and conducting radiological analysis in children with cervical and thoracic spine abnormalities.
RESUMO
Response criteria for paediatric intracranial ependymoma vary historically and across different international cooperative groups. The Response Assessment in the Pediatric Neuro-Oncology (RAPNO) working group, consisting of an international panel of paediatric and adult neuro-oncologists, neuro-radiologists, radiation oncologists, and neurosurgeons, was established to address both the issues and the unique challenges in assessing the response in children with CNS tumours. We established a subcommittee to develop response assessment criteria for paediatric ependymoma. Current practice and literature were reviewed to identify major challenges in assessing the response of paediatric ependymoma to clinical trial therapy. For areas in which data were scarce or unavailable, consensus was reached through an iterative process. RAPNO response assessment recommendations include assessing disease response on the basis of changes in tumour volume, and using event-free survival as a study endpoint for patients entering clinical trials without bulky disease. Our recommendations for response assessment include the use of brain and spine MRI, cerebral spinal fluid cytology, neurological examination, and steroid use. Baseline postoperative imaging to assess for residual tumour should be obtained 24-48 h after surgery. Our consensus recommendations and response definitions should be prospectively validated in clinical trials.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ependimoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/patologia , Criança , Ependimoma/diagnóstico por imagem , Ependimoma/terapia , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Background: 23Na MRI correlates with tumor proliferation, and studies in pediatric patients are lacking. The purpose of the study: (1) to compare total sodium concentration (TSC) between pediatric glioma and non-neoplastic brain tissue using 23Na MRI; (2) compare tissue conspicuity of bound sodium concentration (BSC) using 23Na MRI dual echo relative to TSC imaging. Methods: TSC was measured in: (1) non-neoplastic brain tissues and (2) three types of manually segmented gliomas (diffuse intrinsic brainstem glioma (DIPG), recurrent supratentorial low-grade glioma (LGG), and high-grade glioma (HGG)). In a subset of patients, serial changes in both TSC and BSC (dual echo 23Na MRI) were assessed. Results: Twenty-six pediatric patients with gliomas (median age of 12.0 years, range 4.9−23.3 years) were scanned with 23Na MRI. DIPG treated with RT demonstrated higher TSC values than the uninvolved infratentorial tissues (p < 0.001). Recurrent supratentorial LGG and HGG exhibited higher TSC values than the uninvolved white matter (WM) and gray matter (GM) (p < 0.002 for LGG, and p < 0.02 for HGG). The dual echo 23Na MRI suppressed the sodium signal within both CSF and necrotic foci. Conclusion: Quantitative 23Na MRI of pediatric gliomas demonstrates a range of values that are higher than non-neoplastic tissues. Dual echo 23Na MRI of BCS improves tissue conspicuity relative to TSC imaging.
RESUMO
Homogeneous and common objective disease assessments and standardised response criteria are important for better international clinical trials for CNS germ cell tumours. Currently, European protocols differ from those of North America (the USA and Canada) in terms of criteria to assess radiological disease response. An international working group of the European Society for Paediatric Oncology Brain Tumour Group and North American Children's Oncology Group was therefore established to review existing literature and current practices, identify major challenges regarding imaging assessment, and develop consensus recommendations for imaging response assessment for patients with CNS germ cell tumours. New clinical imaging standards were defined for the most common sites of CNS germ cell tumour and for the definition of locoregional extension. These new standards will allow the evaluation of response to therapy in patients with CNS germ cell tumours to be more consistent, and facilitate direct comparison of treatment outcomes across international studies.
Assuntos
Neoplasias Encefálicas , Neoplasias Embrionárias de Células Germinativas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Criança , Consenso , Diagnóstico por Imagem , Humanos , Neoplasias Embrionárias de Células Germinativas/diagnóstico por imagem , Neoplasias Embrionárias de Células Germinativas/terapia , Resultado do TratamentoRESUMO
BACKGROUND: The study aimed to evaluate whether simplified chemotherapy followed by dose-reduced irradiation was effective for treating patients (ages 3-21 years) with localized germinoma. The primary endpoint was 3-year progression-free survival (PFS) rate. METHODS: Patients with a complete response to chemotherapy with carboplatin and etoposide received 18 Gy WVI + 12 Gy boost to the tumor bed. Patients with partial response proceeded to 24 Gy WVI + 12 Gy. Longitudinal cognitive functioning was evaluated prospectively on ALTE07C1 and was a primary study aim. RESULTS: One hundred and fifty-one patients were enrolled; 137 were eligible. Among 90 evaluable patients, 74 were treated with 18 Gy and 16 with 24 Gy WVI. The study failed to demonstrate noninferiority of the 18 Gy WVI regimen compared to the design threshold of 95% 3-year PFS rate, where, per design, patients who could not be assessed for progression at 3 years were counted as failures. The Kaplan-Meier (KM)-based 3-year PFS estimates were 94.5 ± 2.7% and 93.75 ± 6.1% for the 18 Gy and 24 Gy WVI cohorts, respectively. Collectively, estimated mean IQ and attention/concentration were within normal range. A lower mean attention score was observed at 9 months for patients treated with 24 Gy. Acute effects in processing speed were observed in the 18 Gy cohort at 9 months which improved at 30-month assessment. CONCLUSIONS: While a failure according to the prospective statistical noninferiority design, this study demonstrated high rates of chemotherapy responses, favorable KM-based PFS and OS estimates in the context of reduced irradiation doses and holds promise for lower long-term morbidities for patients with germinoma.
Assuntos
Neoplasias Encefálicas , Germinoma , Glândula Pineal , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/patologia , Carboplatina/uso terapêutico , Criança , Pré-Escolar , Etoposídeo , Germinoma/tratamento farmacológico , Germinoma/patologia , Germinoma/radioterapia , Humanos , Glândula Pineal/patologia , Estudos Prospectivos , Adulto JovemRESUMO
Traumatic brain injury is responsible for approximately half of all childhood deaths from infancy to puberty, the majority of which are attributable to abusive head trauma (AHT). Due to the broad way patients present and the lack of a clear mechanism of injury in some cases, neuroimaging plays an integral role in the diagnostic pathway of these children. However, this nonspecific nature also presages the existence of numerous conditions that mimic both the clinical and neuroimaging findings seen in AHT. This propensity for misdiagnosis is compounded by the lack of pathognomonic patterns and clear diagnostic criteria. The repercussions of this are severe and have a profound stigmatic effect. The authors present an exhaustive review of the literature complemented by illustrative cases from their institutions with the aim of providing a framework with which to approach the neuroimaging and diagnosis of AHT.