Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomicrofluidics ; 17(5): 054106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854890

RESUMO

Separation of blood components is required in many diagnostic applications and blood processes. In laboratories, blood is usually fractionated by manual operation involving a bulk centrifugation equipment, which significantly increases logistic burden. Blood sample processing in the field and resource-limited settings cannot be readily implemented without the use of microfluidic technology. In this study, we developed a small footprint, rapid, and passive microfluidic channel device that relied on margination and inertial focusing effects for blood component separation. No blood dilution, lysis, or labeling step was needed as to preserve sample integrity. One main innovation of this work was the insertion of fluidic restrictors at outlet ports to divert the separation interface into designated outlet channels. Thus, separation efficiency was significantly improved in comparison to previous works. We demonstrated different operation modes ranging from platelet or plasma extraction from human whole blood to platelet concentration from platelet-rich plasma through the manipulation of outlet port fluidic resistance. Using straight microfluidic channels with a high aspect ratio rectangular cross section, we demonstrated 95.4% platelet purity extracted from human whole blood. In plasma extraction, 99.9% RBC removal rate was achieved. We also demonstrated 2.6× concentration of platelet-rich plasma solution to produce platelet concentrate. The extraction efficiency and throughput rate are scalable with continuous and clog-free recirculation operation, in contrast to other blood fractionation approaches using filtration membranes or affinity-based purification methods. Our microfluidic blood separation method is highly tunable and versatile, and easy to be integrated into multi-step blood processing and advanced sample preparation workflows.

2.
Lab Chip ; 23(8): 2131-2140, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974599

RESUMO

Human adipose tissue is a rich source of mesenchymal stem cells (MSCs). Human adipose-derived stem cells (ADSCs) are first prepared by tissue digestion of lipoaspirate. The remaining constituent contains a mixture of ADSCs, other cell types and lysed fragments. We have developed a scalable microfluidic sorter cascade which enabled high-throughput and label-free enrichment of ADSCs prepared from tissue-digested human adipose samples to improve the quality of purified stem cell product. The continuous microfluidic sorter cascade was composed of spiral-shaped inertial and deterministic lateral displacement (DLD) sorters which separated cells based on size difference. The cell count characterization results showed >90% separation efficiency. We also demonstrated that the enriched ADSC sub-population by the microfluidic sorter cascade yielded 6× enhancement of expansion capacity in tissue culture. The incorporation of this microfluidic sorter cascade into ADSC preparation workflow facilitates the generation of transplantation-scale stem cell product. We anticipate our stem cell microfluidic sorter cascade will find a variety of research and clinical applications in tissue engineering and regeneration medicine.


Assuntos
Adipócitos , Microfluídica , Humanos , Diferenciação Celular , Adipócitos/metabolismo , Tecido Adiposo , Células-Tronco/metabolismo
3.
Appl Spectrosc ; 69(10): 1182-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26449812

RESUMO

We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.


Assuntos
Ouro/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Bovinos , Desenho de Equipamento , Soroalbumina Bovina/análise
4.
Soft Matter ; 2(9): 738-750, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32680214

RESUMO

We overview the ways in which electric fields can be used for on-chip manipulation and assembly of colloidal particles. Particles suspended in water readily respond to alternating (AC) or direct current (DC) electric fields. Charged particles in DC fields are moved towards oppositely charged electrodes by electrophoresis. Dielectrophoresis, particle mobility in AC fields, allows precise manipulation of particles through a range of parameters including field strength and frequency and electrode geometry. Simultaneously, DC or AC electrokinetics may drive liquid flows inside the experimental cells, which also leads to transport and redistribution of the suspended particles. Examples of dielectrophoretic manipulation and assembly of nanoparticles and microparticles by planar on-chip electrodes are presented. The structures assembled include conductive microwires from metallic nanoparticles and switchable two-dimensional crystals from polymer microspheres. We also discuss how dielectrophoresis and AC electrokinetics can be used in droplet-based microfluidic chips, biosensors, and devices for collection of particles from diluted suspensions.

5.
Langmuir ; 21(14): 6603-12, 2005 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15982074

RESUMO

We report an electrohydrodynamic effect arising from the application of alternating electric fields to patterned electrode surfaces. The AC fields were applied to dilute suspensions of latex microspheres enclosed between a patterned silicon wafer and an ITO-coated glass slide in a small chamber. The latex particles became collected in the center of the conductive "corrals" on the silicon wafer acting as bottom electrode. The particle collection efficiency and speed depended only on the frequency and strength of the field and were independent of the material properties of the particles or the electrodes. The leading effect in the particle collection process is AC electrohydrodynamics. We discuss how the electrohydrodynamic flows emerge from the spatially nonuniform field and interpret the experimental results by means of electrostatic and hydrodynamic simulations. The technique allows three-dimensional microfluidic pumping and transport by the use of two-dimensional patterns. We demonstrate on-chip collection of latex particles, yeast cells, and microbes.

6.
Nat Mater ; 4(1): 98-102, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608646

RESUMO

The miniaturization of chemical and biological processes in microfluidic devices and bioarrays is a major technological achievement. Microchips performing multiphase material synthesis operations could be a future step in this trend of miniaturizing technology. Here we show how electrically controlled chips can be used for the synthesis and manipulation of new types of particles with advanced structure. The method is based on a technique that allows freely suspended droplets and particles to be entrapped and transported using electric fields. The fields that hold and guide the droplets and particles are applied through arrays of electrodes submerged in the oil. Each of the microdroplets suspended on the surface of fluorinated liquid serves as a microscopic reactor, where the particles are formed by solidification of the carrier droplets. Controlled on-chip assembly, drying, encapsulation and polymerization were used to make anisotropic 'eyeball' and striped particles, polymer capsules and semiconducting microbeads.


Assuntos
Microfluídica/métodos , Nanoestruturas/química , Polímeros/química , Polímeros/síntese química , Anisotropia
7.
Langmuir ; 20(2): 467-76, 2004 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15743092

RESUMO

Suspensions of metallic nanoparticles in water were assembled via the action of an alternating electric field (dielectrophoresis) into wires of micrometer thickness. Two modes of microwire assembly, one through the bulk of the suspension and one as half-cylinders on the glass surface between the electrodes, were identified. The operating conditions responsible for the two assembly modes were recognized. The control of the process parameters allows making, for example, straight single connectors or massively parallel arrays of microwires on the surface of the chip, which can be extracted in dry form. The microwire assembly process was modeled using finite element electrostatic calculations. The direction of growth can be guided by introducing conductive islands or particles in the suspension. The experiments, supported by electrostatic calculations, show that the wires grow in the direction of highest field intensity, "automatically" making electrical connections to the objects between the electrodes. The results point the way to controlled dielectrophoretic assembly of nanoparticles into on-chip electrical connectors, switches, and networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA