Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; : e2400228, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859636

RESUMO

Titanium nitride is an exciting plasmonic material, with optical properties similar to gold. However, synthesizing TiN nanocrystals is highly challenging and typically requires solid-state reactions at very high temperatures (800-1000°C). Here, the synthesis of TiN nanocrystals is achieved at temperatures as low as 350°C, in just 1 h. The strategy comprises molten salt, Mg as reductant and Ca3N2 as nitride source. This brings TiN from the realm of solid-state chemistry into the field of solution-based synthesis in regular, borosilicate glassware.

2.
Phys Chem Chem Phys ; 25(6): 4563-4569, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722885

RESUMO

Bismuth halides with formula A3Bi2X9, where A is an inorganic or organic cation, show desirable properties as solar absorbers and luminescent materials. Control of structural and electronic dimensionality of these compounds is important to yield materials with good light absorption and charge transport. Here we report mechanochemical reaction of (CH3NH3)3Bi2Br9 with SnBr2 at room temperature in air, yielding a material with strong absorption across the visible region. We attribute this to mixed valence doping of Sn(II) and Sn(IV) on the Bi site. X-Ray diffraction shows no secondary phases, even after heating at 200 °C to improve crystallinity. X-Ray photoelectron spectroscopy suggests the presence of Sn(II) and Sn(IV) states. A similar approach to dope Sn into the iodide analogue (CH3NH3)3Bi2I9 was unsuccessful.

4.
J Phys Condens Matter ; 33(23)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33647896

RESUMO

Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA