Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
2.
PLoS Comput Biol ; 20(4): e1011575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683878

RESUMO

Compartmental models that describe infectious disease transmission across subpopulations are central for assessing the impact of non-pharmaceutical interventions, behavioral changes and seasonal effects on the spread of respiratory infections. We present a Bayesian workflow for such models, including four features: (1) an adjustment for incomplete case ascertainment, (2) an adequate sampling distribution of laboratory-confirmed cases, (3) a flexible, time-varying transmission rate, and (4) a stratification by age group. Within the workflow, we benchmarked the performance of various implementations of two of these features (2 and 3). For the second feature, we used SARS-CoV-2 data from the canton of Geneva (Switzerland) and found that a quasi-Poisson distribution is the most suitable sampling distribution for describing the overdispersion in the observed laboratory-confirmed cases. For the third feature, we implemented three methods: Brownian motion, B-splines, and approximate Gaussian processes (aGP). We compared their performance in terms of the number of effective samples per second, and the error and sharpness in estimating the time-varying transmission rate over a selection of ordinary differential equation solvers and tuning parameters, using simulated seroprevalence and laboratory-confirmed case data. Even though all methods could recover the time-varying dynamics in the transmission rate accurately, we found that B-splines perform up to four and ten times faster than Brownian motion and aGPs, respectively. We validated the B-spline model with simulated age-stratified data. We applied this model to 2020 laboratory-confirmed SARS-CoV-2 cases and two seroprevalence studies from the canton of Geneva. This resulted in detailed estimates of the transmission rate over time and the case ascertainment. Our results illustrate the potential of the presented workflow including stratified transmission to estimate age-specific epidemiological parameters. The workflow is freely available in the R package HETTMO, and can be easily adapted and applied to other infectious diseases.


Assuntos
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Fluxo de Trabalho , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , Biologia Computacional , Simulação por Computador , Adulto , Suíça/epidemiologia
3.
Sci Rep ; 14(1): 1196, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216698

RESUMO

Understanding and facilitating healthy aging has become a major goal in medical research and it is becoming increasingly acknowledged that there is a need for understanding the aging phenotype as a whole rather than focusing on individual factors. Here, we provide a universal explanation for the emergence of Gompertzian mortality patterns using a systems approach to describe aging in complex organisms that consist of many inter-dependent subsystems. Our model relates to the Sufficient-Component Cause Model, widely used within the field of epidemiology, and we show that including inter-dependencies between subsystems and modeling the temporal evolution of subsystem failure results in Gompertizan mortality on the population level. Our model also provides temporal trajectories of mortality-risk for the individual. These results may give insight into understanding how biological age evolves stochastically within the individual, and how this in turn leads to a natural heterogeneity of biological age in a population.


Assuntos
Pesquisa Biomédica , Envelhecimento Saudável , Humanos , Modelos Biológicos , Envelhecimento , Fenótipo , Mortalidade
4.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085949

RESUMO

Phylogenetics is now fundamental in life sciences, providing insights into the earliest branches of life and the origins and spread of epidemics. However, finding suitable phylogenies from the vast space of possible trees remains challenging. To address this problem, for the first time, we perform both tree exploration and inference in a continuous space where the computation of gradients is possible. This continuous relaxation allows for major leaps across tree space in both rooted and unrooted trees, and is less susceptible to convergence to local minima. Our approach outperforms the current best methods for inference on unrooted trees and, in simulation, accurately infers the tree and root in ultrametric cases. The approach is effective in cases of empirical data with negligible amounts of data, which we demonstrate on the phylogeny of jawed vertebrates. Indeed, only a few genes with an ultrametric signal were generally sufficient for resolving the major lineages of vertebrates. Optimization is possible via automatic differentiation and our method presents an effective way forward for exploring the most difficult, data-deficient phylogenetic questions.


Assuntos
Algoritmos , Modelos Genéticos , Filogenia , Simulação por Computador
5.
Syst Biol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153910

RESUMO

Birth-death models are stochastic processes describing speciation and extinction through time and across taxa, and are widely used in biology for inference of evolutionary timescales. Previous research has highlighted how the expected trees under the constant-rate birth-death (crBD) model tend to differ from empirical trees, for example with respect to the amount of phylogenetic imbalance. However, our understanding of how trees differ between the crBD model and the signal in empirical data remains incomplete. In this Point of View, we aim to expose the degree to which the crBD model differs from empirically inferred phylogenies and test the limits of the model in practice. Using a wide range of topology indices to compare crBD expectations against a comprehensive dataset of 1189 empirically estimated trees, we confirm that crBD model trees frequently differ topologically compared with empirical trees. To place this in the context of standard practice in the field, we conducted a meta-analysis for a subset of the empirical studies. When comparing studies that used Bayesian methods and crBD priors with those that used other non-crBD priors and non-Bayesian methods (i.e., maximum likelihood methods), we do not find any significant differences in tree topology inferences. To scrutinize this finding for the case of highly imbalanced trees, we selected the 100 trees with the greatest imbalance from our dataset, simulated sequence data for these tree topologies under various evolutionary rates, and re-inferred the trees under maximum likelihood and using the crBD model in a Bayesian setting. We find that when the substitution rate is low, the crBD prior results in overly balanced trees, but the tendency is negligible when substitution rates are sufficiently high. Overall, our findings demonstrate the general robustness of crBD priors across a broad range of phylogenetic inference scenarios, but also highlights that empirically observed phylogenetic imbalance is highly improbable under the crBD model, leading to systematic bias in data sets with limited information content.

6.
J Math Biol ; 87(2): 35, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526739

RESUMO

Renewal equations are a popular approach used in modelling the number of new infections, i.e., incidence, in an outbreak. We develop a stochastic model of an outbreak based on a time-varying variant of the Crump-Mode-Jagers branching process. This model accommodates a time-varying reproduction number and a time-varying distribution for the generation interval. We then derive renewal-like integral equations for incidence, cumulative incidence and prevalence under this model. We show that the equations for incidence and prevalence are consistent with the so-called back-calculation relationship. We analyse two particular cases of these integral equations, one that arises from a Bellman-Harris process and one that arises from an inhomogeneous Poisson process model of transmission. We also show that the incidence integral equations that arise from both of these specific models agree with the renewal equation used ubiquitously in infectious disease modelling. We present a numerical discretisation scheme to solve these equations, and use this scheme to estimate rates of transmission from serological prevalence of SARS-CoV-2 in the UK and historical incidence data on Influenza, Measles, SARS and Smallpox.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Incidência , SARS-CoV-2 , COVID-19/epidemiologia , Prevalência , Doenças Transmissíveis/epidemiologia
7.
PLOS Glob Public Health ; 3(8): e0002134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37611001

RESUMO

Access to medical treatment for fever is essential to prevent morbidity and mortality in individuals and to prevent transmission of communicable febrile illness in communities. Quantification of the rates at which treatment is accessed is critical for health system planning and a prerequisite for disease burden estimates. In this study, national data on the proportion of children under five years old with fever who were taken for medical treatment were collected from all available countries in Africa, Latin America, and Asia (n = 91). We used generalised additive mixed models to estimate 30-year trends in the treatment-seeking rates across the majority of countries in these regions (n = 151). Our results show that the proportions of febrile children brought for medical treatment increased steadily over the last 30 years, with the greatest increases occurring in areas where rates had originally been lowest, which includes Latin America and Caribbean, North Africa and the Middle East (51 and 50% increase, respectively), and Sub-Saharan Africa (23% increase). Overall, the aggregated and population-weighted estimate of children with fever taken for treatment at any type of facility rose from 61% (59-64 95% CI) in 1990 to 71% (69-72 95% CI) in 2020. The overall population-weighted average for fraction of treatment in the public sector was largely unchanged during the study period: 49% (42-58 95% CI) sought care at public facilities in 1990 and 47% (44-52 95% CI) in 2020. Overall, the findings indicate that improvements in access to care have been made where they were most needed, but that despite rapid initial gains, progress can plateau without substantial investment. In 2020 there remained significant gaps in care utilisation that must be factored in when developing control strategies and deriving disease burden estimates.

8.
Philos Trans A Math Phys Eng Sci ; 381(2257): 20230132, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611629

RESUMO

Social distancing measures (SDMs) are community-level interventions that aim to reduce person-to-person contacts in the community. SDMs were a major part of the responses first to contain, then to mitigate, the spread of SARS-CoV-2 in the community. Common SDMs included limiting the size of gatherings, closing schools and/or workplaces, implementing work-from-home arrangements, or more stringent restrictions such as lockdowns. This systematic review summarized the evidence for the effectiveness of nine SDMs. Almost all of the studies included were observational in nature, which meant that there were intrinsic risks of bias that could have been avoided were conditions randomly assigned to study participants. There were no instances where only one form of SDM had been in place in a particular setting during the study period, making it challenging to estimate the separate effect of each intervention. The more stringent SDMs such as stay-at-home orders, restrictions on mass gatherings and closures were estimated to be most effective at reducing SARS-CoV-2 transmission. Most studies included in this review suggested that combinations of SDMs successfully slowed or even stopped SARS-CoV-2 transmission in the community. However, individual effects and optimal combinations of interventions, as well as the optimal timing for particular measures, require further investigation. This article is part of the theme issue 'The effectiveness of non-pharmaceutical interventions on the COVID-19 pandemic: the evidence'.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Distanciamento Físico , Controle de Doenças Transmissíveis
9.
PLoS One ; 18(8): e0289632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549164

RESUMO

BACKGROUND: The ability to accurately predict survival in older adults is crucial as it guides clinical decision making. The added value of using health care usage for predicting mortality remains unexplored. The aim of this study was to investigate if temporal patterns of healthcare expenditures, can improve the predictive performance for mortality, in spousal bereaved older adults, next to other widely used sociodemographic variables. METHODS: This is a population-based cohort study of 48,944 Danish citizens 65 years of age and older suffering bereavement within 2013-2016. Individuals were followed from date of spousal loss until death from all causes or 31st of December 2016, whichever came first. Healthcare expenditures were available on weekly basis for each person during the follow-up and used as predictors for mortality risk in Extreme Gradient Boosting models. The extent to which medical spending trajectories improved mortality predictions compared to models with sociodemographics, was assessed with respect to discrimination (AUC), overall prediction error (Brier score), calibration, and clinical benefit (decision curve analysis). RESULTS: The AUC of age and sex for mortality the year after spousal loss was 70.8% [95% CI 68.8, 72.8]. The addition of sociodemographic variables led to an increase of AUC ranging from 0.9% to 3.1% but did not significantly reduce the overall prediction error. The AUC of the model combining the variables above plus medical spending usage was 80.8% [79.3, 82.4] also exhibiting smaller Brier score and better calibration. Overall, patterns of healthcare expenditures improved mortality predictions the most, also exhibiting the highest clinical benefit among the rest of the models. CONCLUSION: Temporal patterns of medical spending have the potential to significantly improve our assessment on who is at high risk of dying after suffering spousal loss. The proposed methodology can assist in a more efficient risk profiling and prognosis of bereaved individuals.


Assuntos
Gastos em Saúde , Aprendizado de Máquina , Humanos , Idoso , Estudos de Coortes , Prognóstico , Dinamarca/epidemiologia
10.
PLoS One ; 18(8): e0289889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37578987

RESUMO

Evaluating normalising constants is important across a range of topics in statistical learning, notably Bayesian model selection. However, in many realistic problems this involves the integration of analytically intractable, high-dimensional distributions, and therefore requires the use of stochastic methods such as thermodynamic integration (TI). In this paper we apply a simple but under-appreciated variation of the TI method, here referred to as referenced TI, which computes a single model's normalising constant in an efficient way by using a judiciously chosen reference density. The advantages of the approach and theoretical considerations are set out, along with pedagogical 1 and 2D examples. The approach is shown to be useful in practice when applied to a real problem -to perform model selection for a semi-mechanistic hierarchical Bayesian model of COVID-19 transmission in South Korea involving the integration of a 200D density.


Assuntos
COVID-19 , Humanos , Teorema de Bayes , Termodinâmica , República da Coreia
11.
PLoS Comput Biol ; 19(8): e1011439, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639484

RESUMO

The time-varying reproduction number (Rt) is an important measure of epidemic transmissibility that directly informs policy decisions and the optimisation of control measures. EpiEstim is a widely used opensource software tool that uses case incidence and the serial interval (SI, time between symptoms in a case and their infector) to estimate Rt in real-time. The incidence and the SI distribution must be provided at the same temporal resolution, which can limit the applicability of EpiEstim and other similar methods, e.g. for contexts where the time window of incidence reporting is longer than the mean SI. In the EpiEstim R package, we implement an expectation-maximisation algorithm to reconstruct daily incidence from temporally aggregated data, from which Rt can then be estimated. We assess the validity of our method using an extensive simulation study and apply it to COVID-19 and influenza data. For all datasets, the influence of intra-weekly variability in reported data was mitigated by using aggregated weekly data. Rt estimated on weekly sliding windows using incidence reconstructed from weekly data was strongly correlated with estimates from the original daily data. The simulation study revealed that Rt was well estimated in all scenarios and regardless of the temporal aggregation of the data. In the presence of weekend effects, Rt estimates from reconstructed data were more successful at recovering the true value of Rt than those obtained from reported daily data. These results show that this novel method allows Rt to be successfully recovered from aggregated data using a simple approach with very few data requirements. Additionally, by removing administrative noise when daily incidence data are reconstructed, the accuracy of Rt estimates can be improved.


Assuntos
COVID-19 , Humanos , Incidência , Software , Simulação por Computador , Reprodução
12.
Age Ageing ; 52(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651750

RESUMO

OBJECTIVE: To develop a prognostic model of 1-year mortality for individuals aged 65+ presenting at the emergency department (ED) with a fall based on health care spending patterns to guide clinical decision-making. DESIGN: Population-based cohort study (n = 35,997) included with a fall in 2013 and followed 1 year. METHODS: Health care spending indicators (dynamical indicators of resilience, DIORs) 2 years before admission were evaluated as potential predictors, along with age, sex and other clinical and sociodemographic covariates. Multivariable logistic regression models were developed and internally validated (10-fold cross-validation). Performance was assessed via discrimination (area under the receiver operating characteristic curve, AUC), Brier scores, calibration and decision curve analysis. RESULTS: The AUC of age and sex for mortality was 72.5% [95% confidence interval 71.8 to 73.2]. The best model included age, sex, number of medications and health care spending DIORs. It exhibited high discrimination (AUC: 81.1 [80.5 to 81.6]), good calibration and potential clinical benefit for various threshold probabilities. Overall, health care spending patterns improved predictive accuracy the most while also exhibiting superior performance and clinical benefit. CONCLUSIONS: Patterns of health care spending have the potential to significantly improve assessments on who is at high risk of dying following admission to the ED with a fall. The proposed methodology can assist in predicting the prognosis of fallers, emphasising the added predictive value of longitudinal health-related information next to clinical and sociodemographic predictors.


Assuntos
Gastos em Saúde , Projetos de Pesquisa , Humanos , Idoso , Estudos de Coortes , Tomada de Decisão Clínica , Serviço Hospitalar de Emergência
13.
PLoS Comput Biol ; 19(6): e1011191, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276210

RESUMO

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), large-scale social contact surveys are now longitudinally measuring the fundamental changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. Here, we present a model-based Bayesian approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model can also quantify time trends and adjust for reporting fatigue emerging in longitudinal surveys through the use of computationally efficient Hilbert Space Gaussian process priors. We illustrate estimation accuracy on simulated data as well as social contact data from Europe and Africa for which the exact age of contacts is reported, and then apply the model to social contact data with coarse information on the age of contacts that were collected in Germany during the COVID-19 pandemic from April to June 2020 across five longitudinal survey waves. We estimate the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contact intensities rebounded in an age-structured, non-homogeneous manner. The Bayesian rate consistency model provides a model-based, non-parametric, computationally tractable approach for estimating the fine structure and longitudinal trends in social contacts and is applicable to contemporary survey data with coarsely reported age of contacts as long as the exact age of survey participants is reported.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Teorema de Bayes , SARS-CoV-2 , Pandemias , Inquéritos e Questionários
14.
Nat Commun ; 14(1): 2945, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263994

RESUMO

Reported incidence of the zoonotic malaria Plasmodium knowlesi has markedly increased across Southeast Asia and threatens malaria elimination. Nonzoonotic transmission of P. knowlesi has been experimentally demonstrated, but it remains unknown whether nonzoonotic transmission is contributing to increases in P. knowlesi cases. Here, we adapt model-based inference methods to estimate RC, individual case reproductive numbers, for P. knowlesi, P. falciparum and P. vivax human cases in Malaysia from 2012-2020 (n = 32,635). Best fitting models for P. knowlesi showed subcritical transmission (RC < 1) consistent with a large reservoir of unobserved infection sources, indicating P. knowlesi remains a primarily zoonotic infection. In contrast, sustained transmission (RC > 1) was estimated historically for P. falciparum and P. vivax, with declines in RC estimates observed over time consistent with local elimination. Together, this suggests sustained nonzoonotic P. knowlesi transmission is highly unlikely and that new approaches are urgently needed to control spillover risks.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium knowlesi , Humanos , Malásia/epidemiologia , Malária/epidemiologia , Malária Falciparum/epidemiologia
15.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343976

RESUMO

BACKGROUND: Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS: We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 µm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS: 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 µg·m-3) and NO2 (per 3.59 µg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION: Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Estudos de Coortes , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , SARS-CoV-2 , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Hospitalização , Fuligem , Dinamarca/epidemiologia
16.
BMJ Glob Health ; 8(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208120

RESUMO

INTRODUCTION: Maps of malaria risk are important tools for allocating resources and tracking progress. Most maps rely on cross-sectional surveys of parasite prevalence, but health facilities represent an underused and powerful data source. We aimed to model and map malaria incidence using health facility data in Uganda. METHODS: Using 24 months (2019-2020) of individual-level outpatient data collected from 74 surveillance health facilities located in 41 districts across Uganda (n=445 648 laboratory-confirmed cases), we estimated monthly malaria incidence for parishes within facility catchment areas (n=310) by estimating care-seeking population denominators. We fit spatio-temporal models to the incidence estimates to predict incidence rates for the rest of Uganda, informed by environmental, sociodemographic and intervention variables. We mapped estimated malaria incidence and its uncertainty at the parish level and compared estimates to other metrics of malaria. To quantify the impact that indoor residual spraying (IRS) may have had, we modelled counterfactual scenarios of malaria incidence in the absence of IRS. RESULTS: Over 4567 parish-months, malaria incidence averaged 705 cases per 1000 person-years. Maps indicated high burden in the north and northeast of Uganda, with lower incidence in the districts receiving IRS. District-level estimates of cases correlated with cases reported by the Ministry of Health (Spearman's r=0.68, p<0.0001), but were considerably higher (40 166 418 cases estimated compared with 27 707 794 cases reported), indicating the potential for underreporting by the routine surveillance system. Modelling of counterfactual scenarios suggest that approximately 6.2 million cases were averted due to IRS across the study period in the 14 districts receiving IRS (estimated population 8 381 223). CONCLUSION: Outpatient information routinely collected by health systems can be a valuable source of data for mapping malaria burden. National Malaria Control Programmes may consider investing in robust surveillance systems within public health facilities as a low-cost, high benefit tool to identify vulnerable regions and track the impact of interventions.


Assuntos
Malária , Controle de Mosquitos , Humanos , Incidência , Uganda/epidemiologia , Estudos Transversais , Malária/epidemiologia , Instalações de Saúde
17.
Lancet Glob Health ; 11(5): e759-e769, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061313

RESUMO

BACKGROUND: Several vaccine candidates are in development against MERS-CoV, which remains a major public health concern. In anticipation of available MERS-CoV vaccines, we examine strategies for their optimal deployment among health-care workers. METHODS: Using data from the 2013-14 Saudi Arabia epidemic, we use a counterfactual analysis on inferred transmission trees (who-infected-whom analysis) to assess the potential impact of vaccination campaigns targeting health-care workers, as quantified by the proportion of cases or deaths averted. We investigate the conditions under which proactive campaigns (ie vaccinating in anticipation of the next outbreak) would outperform reactive campaigns (ie vaccinating in response to an unfolding outbreak), considering vaccine efficacy, duration of vaccine protection, effectiveness of animal reservoir control measures, wait (time between vaccination and next outbreak, for proactive campaigns), reaction time (for reactive campaigns), and spatial level (hospital, regional, or national, for reactive campaigns). We also examine the relative efficiency (cases averted per thousand doses) of different strategies. FINDINGS: The spatial scale of reactive campaigns is crucial. Proactive campaigns outperform campaigns that vaccinate health-care workers in response to outbreaks at their hospital, unless vaccine efficacy has waned significantly. However, reactive campaigns at the regional or national levels consistently outperform proactive campaigns, regardless of vaccine efficacy. When considering the number of cases averted per vaccine dose administered, the rank order is reversed: hospital-level reactive campaigns are most efficient, followed by regional-level reactive campaigns, with national-level and proactive campaigns being least efficient. If the number of cases required to trigger reactive vaccination increases, the performance of hospital-level campaigns is greatly reduced; the impact of regional-level campaigns is variable, but that of national-level campaigns is preserved unless triggers have high thresholds. INTERPRETATION: Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating only health-care workers, underlining the need for countries at risk of outbreaks to stockpile vaccines when available. FUNDING: UK Medical Research Council, UK National Institute for Health Research, UK Research and Innovation, UK Academy of Medical Sciences, The Novo Nordisk Foundation, The Schmidt Foundation, and Investissement d'Avenir France.


Assuntos
Epidemias , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Vacinação , Pessoal de Saúde , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle
18.
JMIR Public Health Surveill ; 9: e42820, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103994

RESUMO

BACKGROUND: China is the most populous country globally and has made significant achievements in the control of infectious diseases over the last decades. The 2003 SARS epidemic triggered the initiation of the China Information System for Disease Control and Prevention (CISDCP). Since then, numerous studies have investigated the epidemiological features and trends of individual infectious diseases in China; however, few considered the changing spatiotemporal trends and seasonality of these infectious diseases over time. OBJECTIVE: This study aims to systematically review the spatiotemporal trends and seasonal characteristics of class A and class B notifiable infectious diseases in China during 2005-2020. METHODS: We extracted the incidence and mortality data of 8 types (27 diseases) of notifiable infectious diseases from the CISDCP. We used the Mann-Kendall and Sen's methods to investigate the diseases' temporal trends, Moran I statistic for their geographical distribution, and circular distribution analysis for their seasonality. RESULTS: Between January 2005 and December 2020, 51,028,733 incident cases and 261,851 attributable deaths were recorded. Pertussis (P=.03), dengue fever (P=.01), brucellosis (P=.001), scarlet fever (P=.02), AIDS (P<.001), syphilis (P<.001), hepatitis C (P<.001) and hepatitis E (P=.04) exhibited significant upward trends. Furthermore, measles (P<.001), bacillary and amebic dysentery (P<.001), malaria (P=.04), dengue fever (P=.006), brucellosis (P=.03), and tuberculosis (P=.003) exhibited significant seasonal patterns. We observed marked disease burden-related geographic disparities and heterogeneities. Notably, high-risk areas for various infectious diseases have remained relatively unchanged since 2005. In particular, hemorrhagic fever and brucellosis were largely concentrated in Northeast China; neonatal tetanus, typhoid and paratyphoid, Japanese encephalitis, leptospirosis, and AIDS in Southwest China; BAD in North China; schistosomiasis in Central China; anthrax, tuberculosis, and hepatitis A in Northwest China; rabies in South China; and gonorrhea in East China. However, the geographical distribution of syphilis, scarlet fever, and hepatitis E drifted from coastal to inland provinces during 2005-2020. CONCLUSIONS: The overall infectious disease burden in China is declining; however, hepatitis C and E, bacterial infections, and sexually transmitted infections continue to multiply, many of which have spread from coastal to inland provinces.


Assuntos
Síndrome da Imunodeficiência Adquirida , Brucelose , Doenças Transmissíveis , Dengue , Hepatite C , Hepatite E , Escarlatina , Sífilis , Tuberculose , Recém-Nascido , Humanos , Escarlatina/epidemiologia , Estudos Retrospectivos , Estações do Ano , Doenças Transmissíveis/epidemiologia
19.
Malar J ; 22(1): 138, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101269

RESUMO

BACKGROUND: As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored. METHODS: First, dimensionality reduction and clustering techniques were applied to rasterized geospatial environmental and mosquito covariates to find archetypal malaria transmission patterns. Next, mechanistic models were run on a representative site from each archetype to assess intervention impact. Finally, these mechanistic results were reprojected onto each pixel to generate full maps of intervention impact. The example configuration used ERA5 and Malaria Atlas Project covariates, singular value decomposition, k-means clustering, and the Institute for Disease Modeling's EMOD model to explore a range of three-year malaria interventions primarily focused on vector control and case management. RESULTS: Rainfall, temperature, and mosquito abundance layers were clustered into ten transmission archetypes with distinct properties. Example intervention impact curves and maps highlighted archetype-specific variation in efficacy of vector control interventions. A sensitivity analysis showed that the procedure for selecting representative sites to simulate worked well in all but one archetype. CONCLUSION: This paper introduces a novel methodology which combines the richness of spatiotemporal mapping with the rigor of mechanistic modeling to create a multi-purpose infrastructure for answering a broad range of important questions in the malaria policy space. It is flexible and adaptable to a range of input covariates, mechanistic models, and mapping strategies and can be adapted to the modelers' setting of choice.


Assuntos
Malária , Animais , Humanos , Malária/prevenção & controle , Controle de Mosquitos/métodos
20.
BMJ Open ; 13(4): e068483, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085298

RESUMO

PURPOSE: The Danish Pathology Life Course (PATHOLIFE) cohort was established to facilitate epidemiological research relating histological and cytological features extracted from patient tissue specimens to the rich life course histories, including both prior and future register data, of the entire Danish population. Research results may increase quality of diagnosis, prognosis and stratification of patient subtypes, possibly identifying novel routes of treatment. PARTICIPANTS: All Danish residents from 1 January 1986 to 31 December 2019, totalling 8 593 421 individuals. FINDINGS TO DATE: We provide an overview of the subpopulation of Danish residents who have had a tissue specimen investigated within the Danish healthcare system, including both the primary sector and hospitals. We demonstrate heterogeneity in sociodemographic and prognostic factors between the general Danish population and the above mentioned subpopulation, and also between the general Danish population and subpopulations of patients with tissue specimens from selected anatomical sites. Results demonstrate the potential of the PATHOLIFE cohort for integrating many different factors into identification and selection of the most valuable tissue blocks for studies of specific diseases and their progression. Broadly, we find that living with a partner, having higher education and income associates with having a biopsy overall. However, this association varies across different tissue and patient types, which also display differences in time-to-death and causes of death. FUTURE PLANS: The PATHOLIFE cohort may be used to study specified patient groups and link health related events from several national health registries, and to sample patient groups, for which stored tissue specimens are available for further research investigations. The PATHOLIFE cohort thereby provides a unique opportunity to prospectively follow people that were characterised and sampled in the past.


Assuntos
Bancos de Espécimes Biológicos , Acontecimentos que Mudam a Vida , Humanos , Estudos Epidemiológicos , Dinamarca/epidemiologia , Sistema de Registros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA