Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 4(6): 5251-5265, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007007

RESUMO

Designing multifunctional linkers is crucial for tricomponent theranostic targeted nanomedicine development as they are essential to enrich polymeric systems with different functional moieties. Herein, we have obtained a hetero-trifunctional linker from malonic acid and demonstrated its implication as an amphiphilic targeted nanotheranostic system (CB DX UN PG FL). We synthesized it with varying hydrophilic segment to fine-tune the hydrophobic/hydrophilic ratio to optimize its self-assembly. pH-responsive hydrazone-linked doxorubicin was conjugated to the backbone (UN PG FL) containing folate as a targeting ligand. Cobalt carbonyl complex was used for T2-weighted magnetic resonance imaging (MRI). Electron micrographs of optimized molecule CB DX UN PG(4 kDa)FL in an aqueous system have demonstrated about 50-60 nm-sized uniform micelles. The relaxivity study and the one-dimensional (1D) imaging experiments clearly revealed the effect of the nanotheranostics system on transverse relaxation (T2) of water molecules, which validated the system as a T2-weighted MRI contrast agent. The detailed in vitro biological studies validated the targeted delivery and anticancer potential of CB DX UN PG(4 kDa)FL. Combining the data on transverse relaxation, folate mediated uptake, and anticancer activity, the designed molecule will have a significant impact on the development of targeted theranostic.


Assuntos
Neoplasias da Mama , Nanomedicina Teranóstica , Neoplasias da Mama/diagnóstico por imagem , Feminino , Ácido Fólico , Humanos , Malonatos , Nanomedicina Teranóstica/métodos
2.
J Phys Chem B ; 122(22): 6094-6100, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29750525

RESUMO

Thermoresponsive polymers exhibit coil-globule transition in aqueous solution where the polymer undergoes transition from the coil-like morphology to a globular form with the change of temperature. Such transitions also reflect changes in the solvent dynamics captured by various spectroscopic methods. In this work, we construct a phenomenological model to capture the dynamics of the NMR relaxation of water molecules of an aqueous solution of thermoresponsive polymers that are known to form hydrogen bonds with the solvent water molecules. The model relies on the behavior of the polymer-solvent hydrogen bonds and the sharing of rotational kinetic energy of water molecules in the vicinity of the polymer chain and the bulk. This is shown to provide a direct estimate of the fractional change of the polymer-water hydrogen bonds across lower critical solution temperature from NMR relaxation data of solvent water along with a reliable estimate of the transition temperature. In addition, it also provides a measure of the dispersion of the strengths of these hydrogen bonds. We exemplify the validity of this model by successfully fitting the experimental data to show that the extracted parameters provide significant insights into the role played by the hydrogen bonds in the process. The possible extension of this model to solvents that form no hydrogen bonds with the polymers is also discussed.

3.
ACS Biomater Sci Eng ; 4(5): 1738-1749, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445331

RESUMO

Theranostic-based nanomedicine plays a crucial role in the field of cancer therapy. This is due to having the capability to combine both therapy and diagnosis together in a single system. Herein a new class of metal-ligand-based nanocarrier in a norbornene backbone has been designed as a theranostic system. Fe3+-terpyridine complex (Fe-Tpy) has been used here as T1 contrast agent for high-resolution MR imaging, and hydrazone-linked doxorubicin is used for effective pH-responsive delivery. Polyethylene glycol functionalized with a folic acid (peg folate) motif is used to make the entire polymeric system dispersible in water for longer retention and site-specific therapy. All these specialty functional groups are anchored in a single system by using the ring-opening metathesis polymerization (ROMP) technique under the norbornene backbone. Relaxivity study and 1D image experiments have shown the utility of Fe-Tpy complex as an effective T1 contrast agent. In vitro studies are performed to confirm the promising potentiality of the nanocarrier as the efficient nanotheranostic system in prostate cancer.

4.
Phys Chem Chem Phys ; 19(26): 17360-17365, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28650042

RESUMO

Understanding the changes in the macro-structure of amphiphilic pH-responsive polymers remains a relevant issue due to their potential use as drug delivery carriers. Since some of the amphiphilic polymers are known to exchange hydrogen ions with an aqueous solvent, we monitor the effective change of the surface to volume ratio of such polymer aggregates using solution-state nuclear magnetic resonance (NMR) spectroscopy. The surface to volume ratio with the help of UV-visible spectroscopy is shown to yield the average diameter of the polymer aggregates. We show that the proposed method not only satisfactorily corroborates the existing notions of how the aggregation of these polymers takes place as a function of pH, but also provides a quantitative estimate of the size of the aggregates.

5.
ACS Omega ; 2(6): 2848-2857, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023678

RESUMO

A multifunctional stimuli-responsive nanotheranostic agent provides huge benefits in nanomedicine by combining both the diagnostic agent and the drug molecule in a single system. This nanosystem is capable of doing multiple tasks, for example, diagnosis, drug delivery, and monitoring the therapeutic response. Hence, theranostic agents are expected to play a significant role in personalized medicine. Herein, a new class of nanotheranostic agents, Pnr-Cbt-Cpt-Pg-Bn, is proposed for the effective delivery of camptothecin. This new class of polymer has been functionalized with a superparamagnetic norbornene cobalt unit for its use in magnetic resonance imaging (MRI). The NMR one-dimensional image confirms the MRI capability of this nanotheranostic agent. This is further modified with the poly(ethylene glycol)-biotin moiety for biocompatibility and site-specificity. The uniqueness of the design is confirmed by an in vitro study where a greater uptake of the nanotheranostic agent is observed when compared with free drugs. Hence, this new class of copolymer shows improved potential as nanotheranostic agents in drug delivery.

6.
Phys Chem Chem Phys ; 17(48): 32384-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26584546

RESUMO

Recently, a sequence with a set of non-equidistant π pulses, often referred to as Uhrig's Dynamic Decoupling (UDD) sequence has been proposed which is shown to be more efficient in suppressing the time dependent systematic sources of dephasing originating from a bosonic bath. This work aims to investigate the potential of such non-equidistant sequences for more accurate measurement of the transverse relaxation time (T2) in liquid state NMR. We have shown experimentally that the dynamic decoupling schemes can estimate T2 more accurately than the equidistant pulse sequence by suppressing the dephasing effects of the field noise in the solution state.

7.
Nat Mater ; 9(6): 504-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473288

RESUMO

Lithium metal has the highest volumetric and gravimetric energy density of all negative-electrode materials when used as an electrode material in a lithium rechargeable battery. However, the formation of lithium dendrites and/or 'moss' on the metal electrode surface can lead to short circuits following several electrochemical charge-discharge cycles, particularly at high rates, rendering this class of batteries potentially unsafe and unusable owing to the risk of fire and explosion. Many recent investigations have focused on the development of methods to prevent moss/dendrite formation. In parallel, it is important to quantify Li-moss formation, to identify the conditions under which it forms. Although optical and electron microscopy can visually monitor the morphology of the lithium-electrode surface and hence the moss formation, such methods are not well suited for quantitative studies. Here we report the use of in situ NMR spectroscopy, to provide time-resolved, quantitative information about the nature of the metallic lithium deposited on lithium-metal electrodes.

8.
J Magn Reson ; 199(1): 1-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19409825

RESUMO

NMR experiments devised to aid in analyses of tissues include magnetization transfer (MT), which can highlight the signals of biological macromolecules through cross-relaxation and/or chemical exchange processes with the bulk (1)H water resonance, and high-resolution magic-angle-spinning (HRMAS) methods, akin to those used in solid-state NMR to introduce additional spectral resolution via the averaging of spin anisotropies. This paper explores the result of combining these methodologies, and reports on MT "z-spectroscopy" between water and cell components in excised tissues under a variety of HRMAS conditions. Main features arising from the resulting (1)H "MTMAS" experiments include strong spinning sideband manifolds centered at the liquid water shift, high-resolution isotropic features coinciding with aliphatic and amide proton resonances, and a second sideband manifold arising as spinning speeds are increased. Interpretations are given for the origin of these various features, including simulations shedding further light onto the nature of MT NMR signals observed for tissue samples. Concurrently, histological examinations are reported validating the limits of HRMAS NMR procedures to the analysis of tissue samples preserved in a number of different ways.


Assuntos
Algoritmos , Biopolímeros/análise , Espectroscopia de Ressonância Magnética/métodos , Modelos Biológicos , Manejo de Espécimes/métodos , Vísceras/química , Animais , Simulação por Computador , Magnetismo , Camundongos , Técnicas de Cultura de Órgãos/métodos , Prótons , Marcadores de Spin
9.
J Am Chem Soc ; 131(26): 9239-49, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19298062

RESUMO

Lithium-ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation because of the extremely large gravimetric and volumetric capacity of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link structure in these systems with electrochemical performance. We apply a combination of static, in situ and magic angle sample spinning, ex situ (7)Li nuclear magnetic resonance (NMR) studies to investigate the changes in local structure that occur in an actual working LIB. The first discharge occurs via the formation of isolated Si atoms and smaller Si-Si clusters embedded in a Li matrix; the latter are broken apart at the end of the discharge, forming isolated Si atoms. A spontaneous reaction of the lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge and potential capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder.

10.
J Chem Phys ; 127(19): 194503, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18035888

RESUMO

The acquisition of ideal powder line shapes remains a recurring challenge in solid-state wideline nuclear magnetic resonance (NMR). Certain species, particularly quadrupolar spins in sites associated with large electric field gradients, are difficult to excite uniformly and with good efficiencies. This paper discusses some of the opportunities that arise upon departing from standard spin-echo excitation approaches and switching to echo sequences that use low-power, frequency-swept radio frequency (rf) pulses instead. The reduced powers demanded by such swept rf fields allow one to excite spins in different crystallites efficiently and with orientation-independent pulse angles, while the large bandwidths of interest that are needed by the measurement can be covered, thanks to the use of broadband frequency sweeps. The fact that the spins' evolution and ensuing dephasing starts at the beginning of such rf manipulation calls for the use of spin-echo sequences; a number of alternatives capable of providing the desired line shapes both in the frequency and in the time domains are introduced and experimentally demonstrated. Sensitivity- and lineshape-wise these experiments are competitive vis-a-vis current implementations of wideline quadrupolar NMR based on hard rf pulses; additional opportunities that may derive from these ideas are also briefly discussed.

11.
J Am Chem Soc ; 128(50): 16014-5, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17165736

RESUMO

Among the methods proposed in recent years toward the acceleration of multidimensional NMR acquisitions is an "ultrafast" approach, capable of delivering arbitrary 2D correlations within a single scan. This scheme operates by parallelizing the indirect-domain temporal incrementation involved in 2D acquisitions, using as aid an ancillary inhomogeneous frequency broadening acting in combination with a train of frequency-shifted RF pulses. So far, all implementations of this frequency broadening have relied on magnetic field gradients; yet the practical performance of gradient-based approaches is sometimes inadequate-for instance when applied on solid samples subject to magic-angle spinning. In order to deal with these cases, an alternative encoding protocol is here introduced and experimentally exemplified, based on exploiting the intrinsic anisotropy that spin interactions exhibit in the solid state as the ancillary broadening in charge of encoding the interactions to be measured. Principles and preliminary examples of the new orientationally encoded ultrafast 2D NMR principle thus resulting are presented and discussed.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fatores de Tempo
12.
J Magn Reson ; 171(2): 359-63, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15546764

RESUMO

NMR photography has gained significant attention as a method of storing and retrieving information using NMR spectroscopy. Among the commonly practiced methods the most important is the frequency encoding by use of a multi-frequency pulse on a liquid crystal molecule. We propose and demonstrate another robust method which relies on spatial encoding. Spatial information is mapped onto the spectrum, if excited and recorded in the presence of a gradient. The encoding is performed by applying a multi-frequency pulse in the presence of a gradient. The subsequent acquisition, under a gradient, helps storing this spatial information on a one-dimensional spectrum. Series of such spectra can also store two-dimensional patterns. This procedure is described and exemplified in this paper.

13.
J Magn Reson ; 170(2): 310-21, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15388095

RESUMO

Quantum information processing by NMR with small number of qubits is well established. Scaling to higher number of qubits is hindered by two major requirements (i) mutual coupling among qubits and (ii) qubit addressability. It has been demonstrated that mutual coupling can be increased by using residual dipolar couplings among spins by orienting the spin system in a liquid crystalline matrix. In such a case, the heteronuclear spins are weakly coupled, but the homonuclear spins often become strongly coupled. In such circumstances, the strongly coupled spins, which yield second order spectra, can no longer be individually treated as qubits. However, it has been demonstrated elsewhere, that the 2(N) energy levels of a strongly coupled N spin-1/2 system can be treated as an N-qubit system. For this purpose the various transitions have to be identified to well defined energy levels. This paper consists of two parts. In the first part, the energy level diagram of a heteronuclear 5-spin system is obtained by using a newly developed heteronuclear z-cosy (HET-Z-COSY) experiment. In the second part, implementation of logic gates, preparation of pseudopure states, creation of entanglement, and entanglement transfer is demonstrated, validating the use of such systems for quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA