RESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease. Accumulating evidence strongly suggests that intrinsic muscle defects exist and contribute to disease progression, including imbalances in whole-body metabolic homeostasis. We have previously reported that tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor inducible 14 (Fn14) are significantly upregulated in skeletal muscle of the SOD1G93A ALS mouse model. While antagonising TWEAK did not impact survival, we did observe positive effects in skeletal muscle. Given that Fn14 has been proposed as the main effector of the TWEAK/Fn14 activity and that Fn14 can act independently from TWEAK in muscle, we suggest that manipulating Fn14 instead of TWEAK in the SOD1G93A ALS mice could lead to differential and potentially improved benefits. METHODS: We thus investigated the contribution of Fn14 to disease phenotypes in the SOD1G93A ALS mice. To do so, Fn14 knockout mice (Fn14-/-) were crossed onto the SOD1G93A background to generate SOD1G93A;Fn14-/- mice. Investigations were performed on both unexercised and exercised (rotarod and/or grid test) animals (wild type (WT), Fn14-/-, SOD1G93A and SOD1G93A;Fn14-/-). RESULTS: Here, we firstly confirm that the TWEAK/Fn14 pathway is dysregulated in skeletal muscle of SOD1G93A mice. We then show that Fn14-depleted SOD1G93A mice display increased lifespan, myofiber size, neuromuscular junction endplate area as well as altered expression of known molecular effectors of the TWEAK/Fn14 pathway, without an impact on motor function. Importantly, we also observe a complex interaction between exercise (rotarod and grid test), genotype, disease state and sex that influences the overall effects of Fn14 deletion on survival, expression of known molecular effectors of the TWEAK/Fn14 pathway, expression of myosin heavy chain isoforms and myofiber size. CONCLUSIONS: Our study provides further insights on the different roles of the TWEAK/Fn14 pathway in pathological skeletal muscle and how they can be influenced by age, disease, sex and exercise. This is particularly relevant in the ALS field, where combinatorial therapies that include exercise regimens are currently being explored. As such, a better understanding and consideration of the interactions between treatments, muscle metabolism, sex and exercise will be of importance in future studies.
Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Camundongos Transgênicos , Músculo Esquelético , Receptor de TWEAK , Animais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Feminino , Camundongos , Condicionamento Físico Animal , Camundongos Knockout , Citocina TWEAK/metabolismo , Citocina TWEAK/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Assuntos
Atrofia Muscular Espinal , Qualidade de Vida , Animais , Humanos , Lactente , Camundongos , Éxons , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/uso terapêuticoRESUMO
Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.
Assuntos
Distrofina/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Linhagem Celular , Distrofina/genética , Camundongos , Mioblastos Esqueléticos/metabolismo , Utrofina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS: Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS: The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS: Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.
Assuntos
Distrofina/metabolismo , MicroRNAs/metabolismo , Sarcolema/metabolismo , Animais , Criança , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Sarcolema/patologiaRESUMO
Extracellular small RNAs (sRNAs), including microRNAs (miRNAs), are promising biomarkers for diseases such as Duchenne muscular dystrophy (DMD), although their biological relevance is largely unknown. To investigate the relationship between intracellular and extracellular sRNA levels on a global scale, we performed sRNA sequencing in four muscle types and serum from wild-type, dystrophic mdx, and mdx mice in which dystrophin protein expression was restored by exon skipping. Differentially abundant sRNAs were identified in serum (mapping to miRNA, small nuclear RNA [snRNA], and PIWI-interacting RNA [piRNA] loci). One novel candidate biomarker, miR-483, was increased in both mdx serum and muscle, and also elevated in DMD patient sera. Dystrophin restoration induced global shifts in miRNA (including miR-483) and snRNA-fragment abundance toward wild-type levels. Specific serum piRNA-like sRNAs also responded to exon skipping therapy. Absolute miRNA expression in muscle was positively correlated with abundance in the circulation, although multiple highly expressed miRNAs in muscle were not elevated in mdx serum, suggesting that both passive and selective release mechanisms contribute to serum miRNA levels. In conclusion, this study has revealed new insights into the sRNA biology of dystrophin deficiency and identified novel DMD biomarkers.
RESUMO
Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.
Assuntos
Ritmo Circadiano/efeitos da radiação , Regulação da Expressão Gênica , Luz , Atrofia Muscular Espinal/metabolismo , Animais , Ritmo Circadiano/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Proteína 1 de Sobrevivência do Neurônio Motor/genéticaRESUMO
The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.
Assuntos
Deficiência Intelectual/genética , Mutação Puntual , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Transtornos do Sono-Vigília/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions.
Assuntos
Arabidopsis/genética , Variação Estrutural do Genoma , Característica Quantitativa Herdável , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Fenótipo , Imunidade Vegetal/genética , Locos de Características QuantitativasRESUMO
Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.
Assuntos
Animais não Endogâmicos/genética , Mapeamento Cromossômico , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Animais , Genótipo , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Accurate catalogs of structural variants (SVs) in mammalian genomes are necessary to elucidate the potential mechanisms that drive SV formation and to assess their functional impact. Next generation sequencing methods for SV detection are an advance on array-based methods, but are almost exclusively limited to four basic types: deletions, insertions, inversions and copy number gains. RESULTS: By visual inspection of 100 Mbp of genome to which next generation sequence data from 17 inbred mouse strains had been aligned, we identify and interpret 21 paired-end mapping patterns, which we validate by PCR. These paired-end mapping patterns reveal a greater diversity and complexity in SVs than previously recognized. In addition, Sanger-based sequence analysis of 4,176 breakpoints at 261 SV sites reveal additional complexity at approximately a quarter of structural variants analyzed. We find micro-deletions and micro-insertions at SV breakpoints, ranging from 1 to 107 bp, and SNPs that extend breakpoint micro-homology and may catalyze SV formation. CONCLUSIONS: An integrative approach using experimental analyses to train computational SV calling is essential for the accurate resolution of the architecture of SVs. We find considerable complexity in SV formation; about a quarter of SVs in the mouse are composed of a complex mixture of deletion, insertion, inversion and copy number gain. Computational methods can be adapted to identify most paired-end mapping patterns.
Assuntos
Mapeamento Cromossômico/métodos , Genoma , Camundongos Endogâmicos/genética , Animais , Sequência de Bases , Pontos de Quebra do Cromossomo , Dosagem de Genes , Variação Genética , Genômica , Camundongos , Dados de Sequência Molecular , Mutagênese Insercional/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Deleção de Sequência/genética , Inversão de Sequência/genéticaRESUMO
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.
Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Camundongos/genética , Fenótipo , Alelos , Animais , Animais de Laboratório/genética , Genômica , Camundongos/classificação , Camundongos Endogâmicos C57BL/genética , Filogenia , Locos de Características Quantitativas/genéticaRESUMO
Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.
Assuntos
Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Fenótipo , Animais , Pontos de Quebra do Cromossomo , Éxons/genética , Feminino , Expressão Gênica , Genômica , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos/imunologia , Mutagênese Insercional/genética , Locos de Características Quantitativas/genética , Ratos , Retroelementos/genética , Deleção de Sequência/genéticaRESUMO
BACKGROUND: Array comparative genomic hybridization (aCGH) to detect copy number variants (CNVs) in mammalian genomes has led to a growing awareness of the potential importance of this category of sequence variation as a cause of phenotypic variation. Yet there are large discrepancies between studies, so that the extent of the genome affected by CNVs is unknown. We combined molecular and aCGH analyses of CNVs in inbred mouse strains to investigate this question. PRINCIPAL FINDINGS: Using a 2.1 million probe array we identified 1,477 deletions and 499 gains in 7 inbred mouse strains. Molecular characterization indicated that approximately one third of the CNVs detected by the array were false positives and we estimate the false negative rate to be more than 50%. We show that low concordance between studies is largely due to the molecular nature of CNVs, many of which consist of a series of smaller deletions and gains interspersed by regions where the DNA copy number is normal. CONCLUSIONS: Our results indicate that CNVs detected by arrays may be the coincidental co-localization of smaller CNVs, whose presence is more likely to perturb an aCGH hybridization profile than the effect of an isolated, small, copy number alteration. Our findings help explain the hitherto unexplored discrepancies between array-based studies of copy number variation in the mouse genome.
Assuntos
Variações do Número de Cópias de DNA , Dosagem de Genes , Genoma , Camundongos/genética , Animais , Camundongos Endogâmicos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genome-wide association studies using commercially available outbred mice can detect genes involved in phenotypes of biomedical interest. Useful populations need high-frequency alleles to ensure high power to detect quantitative trait loci (QTLs), low linkage disequilibrium between markers to obtain accurate mapping resolution, and an absence of population structure to prevent false positive associations. We surveyed 66 colonies for inbreeding, genetic diversity, and linkage disequilibrium, and we demonstrate that some have haplotype blocks of less than 100 Kb, enabling gene-level mapping resolution. The same alleles contribute to variation in different colonies, so that when mapping progress stalls in one, another can be used in its stead. Colonies are genetically diverse: 45% of the total genetic variation is attributable to differences between colonies. However, quantitative differences in allele frequencies, rather than the existence of private alleles, are responsible for these population differences. The colonies derive from a limited pool of ancestral haplotypes resembling those found in inbred strains: over 95% of sequence variants segregating in outbred populations are found in inbred strains. Consequently it is possible to impute the sequence of any mouse from a dense SNP map combined with inbred strain sequence data, which opens up the possibility of cataloguing and testing all variants for association, a situation that has so far eluded studies in completely outbred populations. We demonstrate the colonies' potential by identifying a deletion in the promoter of H2-Ea as the molecular change that strongly contributes to setting the ratio of CD4+ and CD8+ lymphocytes.
Assuntos
Animais não Endogâmicos/genética , Estudo de Associação Genômica Ampla , Animais , Animais de Laboratório/genética , Mapeamento Cromossômico , Deriva Genética , Marcadores Genéticos , Variação Genética/genética , Genética Populacional , Haplótipos/genética , Endogamia , Desequilíbrio de Ligação/genética , Camundongos , Fenótipo , Filogenia , Locos de Características Quantitativas/genética , Análise de Sequência de DNARESUMO
BACKGROUND: Exploiting synteny between mouse and human disease loci has been proposed as a cost-effective method for the identification of human susceptibility genes. Here we explore its utility in an analysis of a human personality trait, neuroticism, which can be modeled in mice by tests of emotionality. We investigated a mouse emotionality locus on chromosome 1 that contains no annotated genes but abuts four regulators of G protein signaling, one of which (rgs2) has been previously identified as a quantitative trait gene for emotionality. This locus is syntenic with a human region that has been consistently implicated in the genetic aetiology of neuroticism. METHODS: The functional candidacy of 29 murine sequence variants was tested by a combination of gel shift and transient transfection assays. Murine sequences that contained functional variants and exhibited significant cross-species conservation were prioritized for investigation in humans. Genetic association with neuroticism was tested in 1869 high and 2032 low unrelated individuals scored for neuroticism, selected from the extremes of 88,141 people from southwest England. RESULTS: Fifteen sequence variants contributed to variation in the expression of rgs18, the gene lying at the edge of the quantitative trait loci (QTL) interval. There was no evidence of association between neuroticism and single nucleotide polymorphisms (SNPs) lying in the human regions homologous to those of mouse functional variants. One SNP, rs6428058, in a region of sequence conservation 644 kb upstream of RGS18, showed significant association (p = .000631). CONCLUSIONS: It is unlikely that a single variant is responsible for the mouse emotionality locus on chromosome 1. This level of underlying genetic complexity means that although cross-species QTL concordance may be invaluable for the identification of human disease loci, it is unlikely to be as informative in the identification of human disease-causing variants.
Assuntos
Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Predisposição Genética para Doença/genética , Transtornos Neuróticos/genética , Locos de Características Quantitativas/genética , Sintenia/genética , Animais , Transtornos de Ansiedade/genética , Nível de Alerta/genética , Transtorno Depressivo Maior/genética , Emoções , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas RGS/genética , Análise de SequênciaRESUMO
A critical test for a gene that influences susceptibility to fear in animals is that it should have a consistent pattern of effects across a broad range of conditioned and unconditioned models of anxiety. Despite many years of research, definitive evidence that genetic effects operate in this way is lacking. The limited behavioral test regimes so far used in genetic mapping experiments and the lack of suitable multivariate methodologies have made it impossible to determine whether the quantitative trait loci (QTL) detected to date specifically influence fear-related traits. Here we report the first multivariate analysis to explore the genetic architecture of rodent behavior in a battery of animal models of anxiety. We have mapped QTLs in an F2 intercross of two rat strains, the Roman high and low avoidance rats, that have been selectively bred for differential response to fear. Multivariate analyses show that one locus, on rat chromosome 5, influences behavior in different models of anxiety. The QTL influences two-way active avoidance, conditioned fear, elevated plus maze, and open field activity but not acoustic startle response or defecation in a novel environment. The direction of effects of the QTL alleles and a coincidence between the behavioral profiles of anxiolytic drug and genetic action are consistent with the QTL containing at least one gene with a pleiotropic action on fear responses. As the neural basis of fear is conserved across species, we suggest that the QTL may have relevance to trait anxiety in humans.