Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15466, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726366

RESUMO

The BTB/POZ family of proteins is widespread in plants and animals, playing important roles in development, growth, metabolism, and environmental responses. Although members of the expanded BTB/POZ gene family (OsBTB) have been identified in cultivated rice (Oryza sativa), their conservation, novelty, and potential applications for allele mining in O. rufipogon, the direct progenitor of O. sativa ssp. japonica and potential wide-introgression donor, are yet to be explored. This study describes an analysis of 110 BTB/POZ encoding gene loci (OrBTB) across the genome of O. rufipogon as outcomes of tandem duplication events. Phylogenetic grouping of duplicated OrBTB genes was supported by the analysis of gene sequences and protein domain architecture, shedding some light on their evolution and functional divergence. The O. rufipogon genome encodes nine novel BTB/POZ genes with orthologs in its distant cousins in the family Poaceae (Sorghum bicolor, Brachypodium distachyon), but such orthologs appeared to have been lost in its domesticated descendant, O. sativa ssp. japonica. Comparative sequence analysis and structure comparisons of novel OrBTB genes revealed that diverged upstream regulatory sequences and regulon restructuring are the key features of the evolution of this large gene family. Novel genes from the wild progenitor serve as a reservoir of potential new alleles that can bring novel functions to cultivars when introgressed by wide hybridization. This study establishes a foundation for hypothesis-driven functional genomic studies and their applications for widening the genetic base of rice cultivars through the introgression of novel genes or alleles from the exotic gene pool.


Assuntos
Brachypodium , Oryza , Animais , Alelos , Oryza/genética , Filogenia , Genes Duplicados
2.
Funct Integr Genomics ; 23(4): 311, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751043

RESUMO

Pigeon pea is an important protein-rich pulse crop. Identification of flowering master regulators in pigeon pea is highly imperative as indeterminacy and late flowering are impediments towards yield improvement. A genome-wide analysis was performed to explore flowering orthologous groups in pigeon pea. Among the 412 floral orthologs identified in pigeon pea, 148 genes belong to the meristem identity, photoperiod-responsive, and circadian clock-associated ortholog groups. Our comparative genomics study revealed purifying selection pressures (ka/ks) on floral orthologs, and duplication patterns and evolution through synteny with other model species. Phylogenetic analysis of floral genes substantiated a connection between pigeon pea plant architecture and flowering time as all the PEBP domain-containing genes belong to meristem identity floral networks of pigeon pea. Expression profiling of eleven major orthologs in contrasting determinate and indeterminate genotypes indicated that these orthologs might be involved in flowering regulation. Expression of floral inducer, FT, and floral repressor, TFL1, was non-comparable in indeterminate genotypes across all the developmental stages of pigeon pea. However, dynamic FT/TFL1 expression ratio detected in all tissues of both the genotypes suggested their role in floral transition. One TFL1 ortholog having high sequence conserveness across pigeon pea genotypes showed differential expression indicating genotype-dependent regulation of this ortholog. Presence of conserved 6mA-methylation patterns in light-responsive elements and in other cis-regulatory elements of FT and TFL1 across different plant genotypes indicated possible involvement of epigenetic regulation in flowering.


Assuntos
Cajanus , Cajanus/genética , Epigênese Genética , Filogenia , Genótipo , Genômica
3.
Mol Genet Genomics ; 298(3): 507-520, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840794

RESUMO

Genome editing through the alteration of nucleotide sequence has already revolutionized the field of site-directed mutagenesis for a decade. However, research in terms of precision and efficacy in targeting the loci and reduction in off-target mutation has always been a priority when DNA is involved. Therefore, recent research interest lies in utilizing the same precision technology but results in non-transgenic. In this review article, different technological advancements have been explained, which may provide a holistic concept of and need for transgene-free genome editing. The advantage and lacunas of each technology have been critically discussed to deliver a transparent view to the readers. A systematic analysis and evaluation of published research articles implied that researchers across the globe are putting continuous efforts in this direction to eliminate the hindrance of transgenic regulation. Nevertheless, this approach has severe implications legitimate for mitigating the conflict of acceptance, reliability, and generosity of gene-editing technology and sustainably retorting to the expanding global population feeding challenges.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Reprodutibilidade dos Testes , Plantas/genética , DNA , Genoma de Planta/genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA