Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39093392

RESUMO

Being a recognized carcinogen, hexavalent chromium is hazardous to both human and environmental health. Thus, it is imperative to regulate and oversee their levels in a variety of industries, including textiles, dyes, pigments, and metal finishing. This study strives to reduce Cr(VI) in wastewater by using capacitive deionization in conjunction with an activated carbon-based electrode and a continuous electrochemical reactor (CER). Activated carbon derived from rubberwood sawdust demonstrated excellent properties, including a high surface area of 1157 m2 g-1. The electrical conductivity and mechanical stability of the electrode were enhanced by the incorporation of synthesized expanded graphite (EG) into the AC. Key parameters were optimized via systematic batch electroreduction experiments with an optimal response surface design. The efficacy of the fabricated CER was proved when it successfully reduced Cr(VI) in a 5 mg L-1 solution within 15 min under optimized conditions, in contrast to the considerably longer durations anticipated by conventional methods. Validation of these findings was done by treating industrial wastewater of 30 mg L-1 in the CER. The electroreduction of Cr(VI) followed the Langmuir isotherm with a maximum capacity of 13.491 mg g-1 and pseudo-second-order kinetics. These results indicate that the combined use of the modified AC electrode and CER holds potential as a sustainable and economical approach to effectively eliminate Cr(VI) from wastewater.

2.
Environ Sci Pollut Res Int ; 30(39): 90960-90979, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468784

RESUMO

The dairy industry is a high-water-consuming sector, making water conservation crucial, especially in countries like India that are top milk producers and have large populations. This research evaluates the performance and effluent characterization of dairy effluent treatment systems in Kerala using modern, cost-effective technology to address this issue. A hybrid electrocoagulation reactor (HECR) is designed to operate simultaneously in coagulation, and the electrocoagulation process is proposed in this study. The wastewater treatment parameters of the HECR with those of six existing dairy effluent treatment plants using geological mapping and geographic information system (GIS) were studied. According to inverse distance weighted (IDW) interpolation findings, HECR's effluent treatment profile is comparable to existing technologies, with a minimum required retention time of 9.58 h. The results show the HECR treatment efficiency, removing up to 75.15% of turbidity and 94.5% of COD. Moreover, the sludge generated from HECR is transformed into nutrient-rich vermicompost by adding suitable fillers in the ratio of 5:1:3:1 (industrial dairy sludge/HECR sludge: cow dung, dry leaf, and seed vermicompost). The optimal conversion times for vermicompost developed from dairy industrial sludge are 40 days, with nitrogen, phosphorus, and potassium (NPK) values per gram vermicompost of 8.86%, 3.18%, and 3.6%, respectively. For HECR sludge, on the 60th day, the observed NPK value for the developed vermicompost is at 4.76%, 1.46%, and 5.1%. Overall, this research offers a promising solution to treat dairy wastewater and transform generated waste sludge into a valuable resource, highlighting the importance of technology adaptation in the dairy industry.


Assuntos
Esgotos , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Eletrocoagulação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA