Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 14(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39061459

RESUMO

BACKGROUND: Hyperactivity may play a functional role in upregulating prefrontal cortical hypoarousal and executive functioning in ADHD. This study investigated the neurocognitive impact of movement during executive functioning on children with ADHD. METHODS: Twenty-four children with and without ADHD completed a Stroop task and self-efficacy ratings while remaining stationary (Stationary condition) and while desk cycling (Movement condition). Simultaneous functional near-infrared spectroscopy (fNIRS) recorded oxygenated and deoxygenated changes in hemoglobin within the left dorsolateral prefrontal cortex (DLPFC). RESULTS: Among children with ADHD, the Movement condition produced superior Stroop reaction time compared to the Stationary condition (p = 0.046, d = 1.00). Self-efficacy improved in the Movement condition (p = 0.033, d = 0.41), whereas it did not in the Stationary condition (p = 0.323). Seventy-eight percent of participants showed greater oxygenation in the left DLPFC during the Movement condition vs. the Stationary condition. Among children without ADHD, there were no differences in Stroop or self-efficacy outcomes between Stationary and Movement conditions (ps > 0.085, ts < 1.45); 60% of participants showed greater oxygenation in the left DLPFC during the Movement vs. the Stationary condition. CONCLUSIONS: This work provides supportive evidence that hyperactivity in ADHD may be a compensatory mechanism to upregulate PFC hypoarousal to support executive functioning and self-efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA