Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Sci ; 11(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38668421

RESUMO

In the weaning period, piglets often face oxidative stress, which will cause increased diarrhea and mortality. Genistein, a flavonoid, which is extracted from leguminous plants, possesses anti-inflammatory and antioxidative bioactivities. However, little is known about whether genistein could attenuate the oxidative stress that occurs in porcine intestinal epithelial cells (IPEC-J2). Herein, this experiment was carried out to investigate the protective effects of genistein in the IPEC-J2 cells oxidative stress model. Our results disclosed that H2O2 stimulation brought about a significant diminution in catalase (CAT) activity and cell viability, as well as an increase in the levels of reactive oxygen species (ROS) in IPEC-J2 cells (p < 0.05), whereas pretreating cells with genistein before H2O2 exposure helped to alleviate the reduction in CAT activity and cell viability (p < 0.05) and the raise in the levels of ROS (p = 0.061) caused by H2O2. Furthermore, H2O2 stimulation of IPEC-J2 cells remarkably suppressed gene level Nrf2 and CAT expression, in addition to protein level Nrf2 expression, but pretreating cells with genistein reversed this change (p < 0.05). Moreover, genistein pretreatment prevented the downregulation of occludin expression at the gene and protein level, and ZO-1 expression at gene level (p < 0.05). In summary, our findings indicate that genistein possesses an antioxidant capacity in IPEC-J2 cells which is effective against oxidative stress; the potential mechanism may involve the Nrf2 signaling pathway. Our findings could offer a novel nutritional intervention strategy to enhance the intestinal health of piglets during the weaning process.

2.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671855

RESUMO

Fucoidan (FC) is known for its antioxidant properties, but it has unclear effects and mechanisms on weaned piglets. Two experiments were conducted to determine the optimal FC dosage in piglet diets and its protective effect against lipopolysaccharide (LPS)-induced oxidative stress. In experiment one, 24 low weight weaned piglets were randomly assigned to four dietary treatments: a basal diet (FC 0), or a diet supplemented with 150 (FC 150), 300 (FC 300), or 600 mg/kg FC (FC 600). In experiment two, 72 low-weaning weight piglets were randomly allocated into four treatments: a basal diet (CON), or 300 mg/kg of fucoidan added to a basal diet challenged with LPS (100 µg LPS/kg body weight) or not. The results showed that FC treatments increased the G:F ratio, and dietary FC 300 reduced the diarrhea incidence and increased the plasma IGF-1 concentrations. In addition, FC 300 and FC 600 supplementation increased the plasma SOD activity and reduced the plasma MDA concentration. LPS challenge triggered a strong systemic redox imbalance and mitochondrial dysfunction. However, dietary FC (300 mg/kg) supplementation increased the activity of antioxidant enzymes, including SOD, decreased the MDA concentration in the plasma and liver, down-regulated Keap1 gene expression, and up-regulated Nrf2, CAT, MFN2, SDHA, and UQCRB gene expression in the liver. These results indicated that dietary fucoidan (300 mg/kg) supplementation improved the growth performance and antioxidant capacity of low-weaning weight piglets, which might be attributed to the modulation of the Keap1/Nrf2 signaling pathway and the mitochondrial function in the liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA