Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Microbiol ; 15: 1405039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894972

RESUMO

Background: Pear black spot (PBS) is caused by Alternaria alternata and causes severe damage worldwide. It is particularly important to screen for synergistic fungicide combinations to address issues associated with the low efficacy of biocontrol agents, high dosage requirements and poor sustained effectiveness of chemical fungicides. Methods: In vitro and in vivo studies were performed to determine the efficacy of a treatment for this important disease. Additionally, transcriptomic and metabolomic analyses were performed to determine the main molecular and biochemical mechanisms involved in the interaction. Results: Bacillus tequilensis 2_2a has a significant synergistic effect with difenoconazole, causing hyphal entanglement and spore lysis and inhibiting the formation of PBS lesions in vitro. In the field, the control effect of the combination was greater than 95%. The pathways associated with the synergistic effect on the mycelia of A. alternata were divided into two main types: one included glycolysis, oxidative phosphorylation, and MAPK signal transduction, while the other included glycolysis, the TCA cycle, coenzyme A biosynthesis, sterol synthesis, and fatty acid degradation. Both types of pathways jointly affect the cell cycle. The main functions of the key genes and metabolites that have been verified as being affected are glucose synthesis and oxidative respiration, as well as citric acid synthesis, acetyl-CoA synthesis, and sterol synthesis. Both functions involve intracellular pyridine nucleotide metabolism and adenine nucleotide transformation. Conclusion: This study helps to reveal the synergistic mechanisms underlying the combined efficacy of biological and chemical agents, providing a scientific basis for field applications.

2.
J Fungi (Basel) ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667931

RESUMO

The necrotrophic pathogen Botrytis cinerea infects a broad range of plant hosts and causes substantial economic losses to many crops. Although resistance to procymidone has been observed in the field, it remains uncertain why procymidone is usually involved in multidrug resistance (MDR) together with other fungicides. Nine mutants derived from the B. cinerea strain B05.10 through procymidone domestication exhibited high resistance factors (RFs) against both procymidone and fludioxonil. However, the fitness of the mutants was reduced compared to their parental strain, showing non-sporulation and moderate virulence. Furthermore, the RFs of these mutants to other fungicides, such as azoxystrobin, fluazinam, difenoconazole, and pyrimethanil, ranged from 10 to 151, indicating the occurrence of MDR. Transcriptive expression analysis using the quantitative polymerase chain reaction (qPCR) revealed that the mutants overexpressed ABC transporter genes, ranging from 2 to 93.7-fold. These mutants carried single-point mutations W647X, R96X, and Q751X within BcBos1 by DNA sequencing. These alterations in BcBos1 conferred resistance to procymidone and other fungicides in the mutants. Molecular docking analysis suggested distinct interactions between procymidone and Bos1 in the B. cinerea standard strain B05.10 or the resistant mutants, suggesting a higher affinity of the former towards binding with the fungicide. This study provides a comprehensive understanding of the biological characteristics of the resistant mutants and conducts an initial investigation into its fungicide resistance traits, providing a reference for understanding the causes of multidrug resistance of B. cinerea in the field.

3.
Plant Dis ; 107(11): 3531-3541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882825

RESUMO

Pear powdery mildew (PPM), caused by Phyllactinia pyri, is one of the most serious diseases affecting production in the Hebei pear-growing region of China. Iminoctadine trialbesilate and trifloxystrobin are known to have broad-spectrum activity against a wide range of plant pathogens, including P. pyri. A total of 105 P. pyri strains were isolated from 11 cities in Hebei Province from 2017 to 2019. Iminoctadine trialbesilate and trifloxystrobin significantly inhibited P. pyri growth. Microscopic observation showed that P. pyri mycelia had different degrees of desiccation and that the conidial cell contents had been released. The sensitivities of 60 P. pyri strains to iminoctadine trialbesilate and trifloxystrobin were determined in vitro, and the average EC50 values were 0.5773 ± 0.0014 and 1.2038 ± 0.0010 µg/ml, respectively. The average EC50 values for 85 and 75% of the strains with continuous single peak frequency distributions were 0.4534 ± 0.0012 and 0.8124 ± 0.0039 µg/ml, respectively. These data could be used as the baseline sensitivities of P. pyri to these two fungicides. The maximum difference multiples of the sensitivities of P. pyri strains from the different cities to iminoctadine trialbesilate and trifloxystrobin were 13.5- and 17.2-fold, respectively. Cluster analysis showed that there was no significant correlation between P. pyri sensitivity and geographical origin. The field efficacies in controlling PPM were higher than 85%. These findings can improve how we monitor iminoctadine trialbesilate and trifloxystrobin resistance and improve application efficiency.


Assuntos
Pyrus , Estrobilurinas/farmacologia , Erysiphe
4.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896358

RESUMO

Maleic anhydride-modified homopolymerized polypropylene (PP-g-MAH) and maleic anhydride-modified polyolefin elastomer (POE-g-MAH) were used as bulking agents to improve the poor processing and mechanical properties of highly filled composites due to high filler content. In this study, a series of linear low-density polyethylene (LLDPE)/magnesium hydroxide (MH) composites were prepared by the melt blending method, and the effects of the compatibilizer on the mechanical properties, flame retardancy, and rheological behavior of the composites were investigated. The addition of the compatibilizer decreased the limiting oxygen index (LOI) values of the composites, but they were all greater than 30.00%, which belonged to the flame retardant grade. Mechanical property tests showed that the addition of the compatibilizer significantly increased the tensile and impact strengths of the LLDPE/60MH (MH addition of 60 wt%) composites. Specifically, the addition of 5 wt% POE-g-MAH increased 154.07% and 415.47% compared to the LLDPE/60MH composites, respectively. The rotational rheology test showed that the addition of the compatibilizer could effectively improve the processing flow properties of the composites. However, due to the hydrocarbon structure of the compatibilizer, its flame retardant properties were adversely affected. This study provides a strategy that can improve the processing and mechanical properties of highly filled composites.

5.
Water Sci Technol ; 81(2): 253-264, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333658

RESUMO

In this study, a positively charged nanofiltration (NF) membrane was prepared by interfacial polymerization for separation of divalent cations, whereby a nanomaterial (modified graphitic carbon nitride (g-C3N4) with poly(dopamine), PDA-C3N4) was incorporated into the active layer of the NF membrane. PDA-C3N4 sheets were synthesized from g-C3N4 sheets prepared by thermal oxidation of melamine, and the preparation conditions of NF membrane were also optimized. The results show that the roughness of PDA-C3N4 embedded NF membrane decreases, and the hydrophilicity and the permeation increase. The membrane also shows high rejection for divalent cations (Mg2+, Ca2+, Ba2+, Cu2+ and Zn2+) but low rejection (36.8%) for monovalent cation (Li+), as well as good fouling resistance performance. The fabricated membrane has the potential for treatment of industrial wastewater.


Assuntos
Membranas Artificiais , Nanoestruturas , Interações Hidrofóbicas e Hidrofílicas , Íons , Polimerização
6.
Nanoscale ; 9(17): 5394-5397, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422195

RESUMO

We report an inducible epitope imprinting strategy that as a template, a flexible peptide chain can have a disordered-to-ordered conformational change by suitable inducement through a molecular imprinting procedure, and the formed nanoparticles can, in turn, remold the original peptide into the expected conformation and specifically bind to the corresponding protein.


Assuntos
Sítios de Ligação , Sistemas de Liberação de Medicamentos , Epitopos/química , Impressão Molecular , Nanopartículas , Animais , Células HeLa , Humanos , Camundongos , Camundongos Nus , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Pharm ; 14(5): 1742-1753, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28358987

RESUMO

Although liver fibrosis is a major public health issue, there is still no effective drug therapy in the clinic. Fibroblast growth factor-inducible 14 (Fn14), a membrane receptor highly specifically expressed in activated hepatic stellate cells (HSCs), is the key driver of liver fibrosis, and thus, it has a great potential as a novel target for the development of effective treatment. Here, we identified a d-enantiomeric peptide ligand of Fn14 through mirror-image mRNA display. This included the chemical synthesis of a d-enantiomer of the target protein (extracellular domain of Fn14), identification of an l-peptide ligand of d-Fn14 using a constructed mRNA peptide library, and identification of a d-enantiomer of the l-peptide, which is a ligand of the natural Fn14 for reasons of symmetry. The obtained d-peptide ligand showed strong binding to Fn14 while maintaining high proteolytic resistance. As a targeting moiety, this d-peptide successfully mediated high selectivity of activated HSCs for liposomal vehicles compared to that of other major cell types in the liver and significantly enhanced the accumulation of liposomes in the liver fibrosis region of a carbon tetrachloride-induced mouse model. Moreover, in combination with curcumin as an encapsulated load, a liposomal formulation conjugated with this d-peptide showed powerful inhibition of the proliferation of activated HSCs and reduced the liver fibrosis to a significant extent in vivo. This Fn14-targeting strategy may represent a promising approach to targeted drug delivery for liver fibrosis treatment. Meanwhile, the mirror-image mRNA display can provide a new arsenal for the development of d-peptide-based therapeutics against a variety of human diseases.


Assuntos
Curcumina/uso terapêutico , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Peptídeos/uso terapêutico , RNA Mensageiro/genética , Receptor de TWEAK/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Curcumina/química , Endocitose/efeitos dos fármacos , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Lipossomos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Peptídeos/química , Receptor de TWEAK/agonistas
8.
Acta Pharm Sin B ; 6(4): 319-28, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27471672

RESUMO

Considering that some antibacterial agents can identify the outer structure of pathogens like cell wall and/or cell membrane, we explored a self-enhanced targeted delivery strategy by which a small amount of the antibiotic molecules were modified on the surface of carriers as targeting ligands of certain bacteria while more antibiotic molecules were loaded inside the carriers, and thus has the potential to improve the drug concentration at the infection site, enhance efficacy and reduce potential toxicity. In this study, a novel targeted delivery system against methicillin-resistant Staphylococcus aureus (MRSA) pneumonia was constructed with daptomycin, a lipopeptide antibiotic, which can bind to the cell wall of S. aureus via its hydrophobic tail. Daptomycin was conjugated with N-hydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine to synthesize a targeting compound (Dapt-PEG-DSPE) which could be anchored on the surface of liposomes, while additional daptomycin molecules were encapsulated inside the liposomes. These daptomycin-modified, daptomycin-loaded liposomes (DPD-L[D]) showed specific binding to MRSA as detected by flow cytometry and good targeting capabilities in vivo to MRSA-infected lungs in a pneumonia model. DPD-L[D] exhibited more favorable antibacterial efficacy against MRSA than conventional PEGylated liposomal daptomycin both in vitro and in vivo. Our study demonstrates that daptomycin-modified liposomes can enhance MRSA-targeted delivery of encapsulated antibiotic, suggesting a novel drug delivery approach for existing antimicrobial agents.

9.
Water Sci Technol ; 70(10): 1690-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429459

RESUMO

An experiment to recover lithium from high Mg(2+)/Li(+) ratio brine by nanofiltration (NF) was carried out. The combination of Donnan exclusion, dielectric exclusion and steric hindrance governed the mass transport inside the NF membrane. Experimental results showed that NF is an efficient technique to recycle Li(+) and reduce Mg(2+)/Li(+) ratio from high Mg(2+)/Li(+) ratio brine. When content reached 6.0 g/L, operating pressure reached 0.8 MPa and Mg(2+)/Li(+) ratio in feed was 40, the rejection of magnesium (R(Mg(2+))) and the separation factor (SF) were 0.96 and 42, respectively. The Mg(2+)/Li(+) ratio in permeate could be reduced to 0.9, and Li(+) recovery ratio was 85%. Adding potassium (K(+)) or sodium (Na(+)) to solution can reduce R(Mg(2+)) and SF.


Assuntos
Filtração/métodos , Lítio/química , Nanotecnologia/métodos , Sais/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Magnésio/química , Potássio/química , Sódio/química
10.
Mol Pharm ; 11(9): 3210-22, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25098949

RESUMO

Faced with the complex medical challenge presented by spinal cord injuries (SCI) and considering the lack of any available curative therapy, the development of a novel method of delivering existing drugs or candidate agents can be perceived to be as important as the development of new therapeutic molecules. By combining three ingredients currently in clinical use or undergoing testing, we have designed a central nervous system targeted delivery system based on apamin-modified polymeric micelles (APM). Apamin, one of the major components of honey bee venom, serves as the targeting moiety, poly(ethylene glycol) (PEG) distearoylphosphatidylethanolamine (DSPE) serves as the drug-loaded material, and curcumin is used as the therapeutic agent. Apamin was conjugated with NHS (N-hydroxysuccinimide)-PEG-DSPE in a site-specific manner, and APM were prepared by a thin-film hydration method. A formulation comprising 0.5 mol % targeting ligand with 50 nm particle size showed strong targeting efficiency in vivo and was evaluated in pharmacodynamic assays. A 7-day treatment by daily intravenous administration of low doses of APM (corresponding to 5 mg/kg of curcumin) was performed. Significantly enhanced recovery and prolonged survival was found in the SCI mouse model, as compared to sham-treated groups, with no apparent toxicity. A single dose of apamin-conjugated polymers was about 700-fold lower than the LD50 amount, suggesting that APM and apamin have potential for clinical applications as spinal cord targeting ligand for delivery of agents in treatment of diseases of the central nervous system.


Assuntos
Apamina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apamina/química , Química Farmacêutica/métodos , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Micelas , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Polímeros/química , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA