Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34250, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130482

RESUMO

Background: Osteoporosis is a debilitating condition characterized by reduced bone density and microstructure, leading to increased susceptibility to fractures and increased mortality, particularly among older individuals. Despite the availability of drugs for osteoporosis treatment, the need for targeted and innovative agents with fewer adverse effects persists. Trifolirhizin, a natural pterostalin derived from the root of Sophora flavescens, has been previously studied for its effects on certain anticancer and antiinflammatory. The impact of trifolirhizin on the formation and function of osteoclasts remain unclear. Purpose: Herein, the possible roles of trifolirhizin the formation and function of osteoclasts and the underlying mechanism were explored. Methods: Bone marrow-derived macrophages (BMMs) were employed to evaluate the roles of trifolirhizin on steoclastogenesis, bone absorption and the underlying mechanism in vitro. Bone loss model was established by ovariectomy(OVX) in mice in vivo. Results: Trifolirhizin repressed osteoclastogenesis, bone resorption induced by receptor activator of nuclear factor kappa B ligand (RANKL) in vitro. Mechanistically, trifolirhizin inhibits RANKL-induced MAPK signal transduction and NFATc1 expression. Moreover, trifolirhizin inhibited osteoclast marker gene expression, including NFATc1, CTSK, MMP9, DC-STAMP, ACP5, and V-ATPase-D2. Additionally, trifolirhizin was found to protect against ovariectomy(OVX)-induced bone loss in mice. Conclusion: Trifolirhizin can effectively inhibit osteoclast production and bone resorption activity. The results of our study provide evidence for trifolirhizin as a potential drug for the prevention and treatment of osteoporosis and other osteolytic diseases.

2.
Biomed Pharmacother ; 168: 115810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913736

RESUMO

BACKGROUND: Several studies have reported the association between osteoporosis and major depressive disorder (MDD) as well as the use of antidepressants. However, it remains to be elucidated whether these associations are related to exposure to antidepressants, a consequence of a disease process, or a combination of both. METHODS: This study investigates the independent effect of the antidepressant duloxetine hydrochloride (DH) on ovariectomy-induced bone loss in mice. One week after ovariectomy, the treated mice received DH. To explore the mechanism underlying the rescue of bone loss, bone marrow cells were isolated from mouse femurs and tibias, and macrophages extracted from them were induced to become osteoclasts in vitro while being treated with DH. Subsequently, the osteoclasts underwent Bulk RNA-Seq to reveal the involved signaling pathways. The results of the bioinformatic analysis were then validated through in vitro experiments. RESULTS: The in vivo experiments demonstrated that DH treatment compromised ovariectomy-induced bone loss after 7 weeks. The in vitro experiments suggested that DH treatment attenuated osteoclast differentiation via the MAPKs/NFATc1 signaling pathway. CONCLUSION: The findings from this study suggest that DH, instead of causing bone mass loss, may assist in alleviating postmenopausal osteoporosis. These results can serve as a reference for the clinical treatment of patients with perimenopausal or postmenopausal depression using antidepressants.


Assuntos
Transtorno Depressivo Maior , Osteoclastos , Humanos , Feminino , Animais , Camundongos , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Transtorno Depressivo Maior/metabolismo , Diferenciação Celular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ovariectomia/efeitos adversos , Osteogênese , Ligante RANK/metabolismo
3.
In Vitro Cell Dev Biol Anim ; 59(6): 420-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37460875

RESUMO

Brevilin A (BA) is the primary component of Centipeda minima, which is widely used in Chinese traditional medicine. The anti-inflammatory and anti-tumor properties of BA have been established; however, its function in bone metabolism is not well understood. This study revealed that concentrations of BA below 1.0 µM did not inhibit the proliferation of bone marrow macrophages but did impede the differentiation and bone resorption activity of osteoclasts. Furthermore, BA suppressed the expression of osteoclast-specific genes Mmp9, Acp5, Dc-stamp, Ctsk, and Atp6v0d2. In addition, mTOR, ERK, and NFATc1 activation in bone marrow macrophages were suppressed by BA. As a whole, BA blocks the mTOR and ERK signaling pathways, which is responsible for the development and activity of osteoclasts, and the resorption of bone.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Osteoclastos/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Serina-Treonina Quinases TOR/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular/genética , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA