Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Oncogene ; 43(15): 1098-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38388710

RESUMO

The non-canonical translation initiation factor EIF4G2 plays essential roles in cellular stress responses via translation of selective mRNA cohorts. Currently there is limited and conflicting information regarding its involvement in cancer development and progression. Here we assessed its role in endometrial cancer (EC), in a cohort of 280 EC patients across different types, grades, and stages, and found that low EIF4G2 expression highly correlated with poor overall- and recurrence-free survival in Grade 2 EC patients, monitored over a period of up to 12 years. To establish a causative connection between low EIF4G2 expression and cancer progression, we stably knocked-down EIF4G2 in two human EC cell lines in parallel. EIF4G2 depletion resulted in increased resistance to conventional therapies and increased the prevalence of molecular markers for aggressive cell subsets, altering their transcriptional and proteomic landscapes. Prominent among the proteins with decreased abundance were Kinesin-1 motor proteins, KIF5B and KLC1, 2, 3. Multiplexed imaging of the EC patient tumor cohort showed a correlation between decreased expression of the kinesin proteins, and poor survival in patients with tumors of certain grades and stages. These findings reveal potential novel biomarkers for Grade 2 EC with ramifications for patient stratification and therapeutic interventions.


Assuntos
Neoplasias do Endométrio , Cinesinas , Feminino , Humanos , Cinesinas/genética , Proteômica , Linhagem Celular , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo
2.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129098

RESUMO

Tumor cells often exploit the protein translation machinery, resulting in enhanced protein expression essential for tumor growth. Since canonical translation initiation is often suppressed because of cell stress in the tumor microenvironment, non-canonical translation initiation mechanisms become particularly important for shaping the tumor proteome. EIF4G2 is a non-canonical translation initiation factor that mediates internal ribosome entry site (IRES)- and uORF-dependent initiation mechanisms, which can be used to modulate protein expression in cancer. Here, we explored the contribution of EIF4G2 to cancer by screening the COSMIC database for EIF4G2 somatic mutations in cancer patients. Functional examination of missense mutations revealed deleterious effects on EIF4G2 protein-protein interactions and, importantly, on its ability to mediate non-canonical translation initiation. Specifically, one mutation, R178Q, led to reductions in protein expression and near-complete loss of function. Two other mutations within the MIF4G domain specifically affected EIF4G2's ability to mediate IRES-dependent translation initiation but not that of target mRNAs with uORFs. These results shed light on both the structure-function of EIF4G2 and its potential tumor suppressor effects.


Assuntos
Neoplasias , Biossíntese de Proteínas , Humanos , Biossíntese de Proteínas/genética , Mutação/genética , Neoplasias/genética , Fator de Iniciação Eucariótico 4G/genética , Microambiente Tumoral
3.
Autophagy ; 19(8): 2372-2385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37184247

RESUMO

Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.


Assuntos
Autofagia , Neoplasias Pancreáticas , Humanos , Interleucina-1beta/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Fluorescência Verde/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína 12 Relacionada à Autofagia
4.
RNA ; 28(10): 1325-1336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961752

RESUMO

Death associated protein 5 (DAP5/eIF4G2/NAT1) is a member of the eIF4G translation initiation factors that has been shown to mediate noncanonical and/or cap-independent translation. It is essential for embryonic development and for differentiation of embryonic stem cells (ESCs), specifically its ability to drive translation of specific target mRNAs. In order to expand the repertoire of DAP5 target mRNAs, we compared ribosome profiles in control and DAP5 knockdown (KD) human ESCs (hESCs) to identify mRNAs with decreased ribosomal occupancy upon DAP5 silencing. A cohort of 68 genes showed decreased translation efficiency in DAP5 KD cells. Mass spectrometry confirmed decreased protein abundance of a significant portion of these targets. Among these was KMT2D, a histone methylase previously shown to be essential for ESC differentiation and embryonic development. We found that nearly half of the cohort of DAP5 target mRNAs displaying reduced translation efficiency of their main coding sequences upon DAP5 KD contained upstream open reading frames (uORFs) that are actively translated independently of DAP5. This is consistent with previously suggested mechanisms by which DAP5 mediates leaky scanning through uORFs and/or reinitiation at the main coding sequence. Crosslinking protein-RNA immunoprecipitation experiments indicated that a significant subset of DAP5 mRNA targets bound DAP5, indicating that direct binding between DAP5 protein and its target mRNAs is a frequent but not absolute requirement for DAP5-dependent translation of the main coding sequence. Thus, we have extended DAP5's function in translation of specific mRNAs in hESCs by a mechanism allowing translation of the main coding sequence following upstream translation of short ORFs.


Assuntos
Fator de Iniciação Eucariótico 4G/metabolismo , Células-Tronco Embrionárias Humanas , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Mol Oncol ; 16(6): 1365-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122388

RESUMO

Radiation therapy can induce cellular senescence in cancer cells, leading to short-term tumor growth arrest but increased long-term recurrence. To better understand the molecular mechanisms involved, we developed a model of radiation-induced senescence in cultured cancer cells. The irradiated cells exhibited a typical senescent phenotype, including upregulation of p53 and its main target, p21, followed by a sustained reduction in cellular proliferation, changes in cell size and cytoskeleton organization, and senescence-associated beta-galactosidase activity. Mass spectrometry-based proteomic profiling of the senescent cells indicated downregulation of proteins involved in cell cycle progression and DNA repair, and upregulation of proteins associated with malignancy. A functional siRNA screen using a cell death-related library identified mitochondrial serine protease HtrA2 as being necessary for sustained growth arrest of the senescent cells. In search of direct HtrA2 substrates following radiation, we determined that HtrA2 cleaves the intermediate filament protein vimentin, affecting its cytoplasmic organization. Ectopic expression of active cytosolic HtrA2 resulted in similar changes to vimentin filament assembly. Thus, HtrA2 is involved in the cytoskeletal reorganization that accompanies radiation-induced senescence and the continuous maintenance of proliferation arrest.


Assuntos
Senescência Celular , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Neoplasias , Proteômica , Apoptose , Senescência Celular/fisiologia , Senescência Celular/efeitos da radiação , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Células Tumorais Cultivadas , Vimentina/metabolismo
6.
Cell Death Differ ; 29(6): 1255-1266, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34992231

RESUMO

The role of programmed cell death during embryonic development has been described previously, but its specific contribution to peri- and post-implantation stages is still debatable. Here, we used transmission electron microscopy and immunostaining of E5.5-7.5 mouse embryos to investigate death processes during these stages of development. We report that in addition to canonical apoptosis observed in E5.5-E7.5 embryos, a novel type of cell elimination occurs in E7.5 embryos among the epiblasts at the apical side, in which cells shed membrane-enclosed fragments of cytosol and organelles into the lumen, leaving behind small, enucleated cell remnants at the apical surface. This process is caspase-independent as it occurred in Apaf1 knockout embryos. We suggest that this novel mechanism controls epiblast cell numbers. Altogether, this work documents the activation of two distinct programs driving irreversible terminal states of epiblast cells in the post-implantation mouse embryo.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Animais , Apoptose , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Gravidez
7.
Cell Cycle ; 18(11): 1169-1176, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31116076

RESUMO

DAPK1 and DAPK2 are calmodulin (CaM)-regulated protein kinases that share a high degree of homology in their catalytic and CaM regulatory domains. Both kinases function as tumor suppressors, and both have been implicated in autophagy regulation. Over the years, common regulatory mechanisms for the two kinases as well as kinase-specific ones have been identified. In a recent work, we revealed that DAPK2 is phosphorylated on Ser289 by the metabolic sensor AMPK, and that this phosphorylation enhances DAPK2 catalytic activity. Notably, Ser289 is conserved between DAPK1 and DAPK2, and was previously found to be phosphorylated in DAPK1 by RSK. Intriguingly, Ser289 phosphorylation was conversely reported to inhibit the pro-apoptotic activity of DAPK1 in cells. However, as the direct effect of this phosphorylation on DAPK1 catalytic activity was not tested, indirect effects were not excluded. Here, we compared Ser289 phosphorylation of the two kinases in the same cells and found that the intracellular signaling pathways that lead to Ser289 phosphorylation are mutually-exclusive and different for each kinase. In addition, we found that Ser289 phosphorylation in fact enhances DAPK1 catalytic activity, similar to the effect on DAPK2. Thus, Ser289 phosphorylation activates both DAPK1 and DAPK2, but in response to different intracellular signaling pathways.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Catálise , Proteínas Quinases Associadas com Morte Celular/química , Ativação Enzimática , Células HCT116 , Células HEK293 , Humanos , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia
8.
Autophagy ; 15(3): 438-452, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30238850

RESUMO

Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutations in cancer, using a computational approach to identify cancer mutational target sites, employing exact statistics. The top significant hit was a missense mutation (Y113C) in the MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) protein, which occurred at a significant frequency in cancer, and was detected in early stages in primary tumors of patients with known tumor lineage. The mutation reduced the formation of GFP-LC3B puncta and attenuated LC3B lipidation during Torin1-induced autophagy. Its effect on the direct physical interaction of LC3B with each of the 4 proteins that control its maturation or lipidation was tested by applying a protein-fragment complementation assay and co-immunoprecipitation experiments. Interactions with ATG4A and ATG4B proteases were reduced, yet without perturbing the cleavage of mutant LC3B. Most importantly, the mutation significantly reduced the interaction with the E1-like enzyme ATG7, but not the direct interaction with the E2-like enzyme ATG3, suggesting a selective perturbation in the binding of LC3B to some of its partner proteins. Structure analysis and molecular dynamics simulations of LC3B protein and its mutant suggest that the mutation changes the conformation of a loop that has several contact sites with ATG4B and the ATG7 homodimer. We suggest that this loss-of-function mutation, which attenuates autophagy, may promote early stages of cancer development.


Assuntos
Proteína 7 Relacionada à Autofagia/metabolismo , Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/genética , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia/química , Proteína 7 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Biologia Computacional , Cisteína Endopeptidases/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Mutação de Sentido Incorreto , Naftiridinas/farmacologia , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
J Cell Sci ; 131(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237248

RESUMO

Autophagy as a means of cell killing was first advanced by Clark's phenotypic description of 'Type II autophagic cell death' in 1990. However, this phenomenon later came into question, because the presence of autophagosomes in dying cells does not necessarily signify that autophagy is the cause of demise, but rather may reflect the efforts of the cell to prevent it. Resolution of this issue comes from a more careful definition of autophagy-dependent cell death (ADCD) as a regulated cell death that is shown experimentally to require different components of the autophagy machinery without involvement of alternative cell death pathways. Following these strict criteria, ADCD has been validated in both lower model organisms and mammalian cells, highlighting its importance for developmental and pathophysiological cell death. Recently, researchers have defined additional morphological criteria that characterize ADCD and begun to explore how the established, well-studied autophagy pathway is subverted from a survival to a death function. This Review explores validated models of ADCD and focuses on the current understanding of the mechanisms by which autophagy can kill a cell.


Assuntos
Autofagia/fisiologia , Morte Celular/fisiologia , Humanos
10.
Nat Commun ; 9(1): 1759, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717115

RESUMO

Autophagy is an intracellular degradation process essential for adaptation to metabolic stress. DAPK2 is a calmodulin-regulated protein kinase, which has been implicated in autophagy regulation, though the mechanism is unclear. Here, we show that the central metabolic sensor, AMPK, phosphorylates DAPK2 at a critical site in the protein structure, between the catalytic and the calmodulin-binding domains. This phosphorylation activates DAPK2 by functionally mimicking calmodulin binding and mitigating an inhibitory autophosphorylation, providing a novel, alternative mechanism for DAPK2 activation during metabolic stress. In addition, we show that DAPK2 phosphorylates the core autophagic machinery protein, Beclin-1, leading to dissociation of its inhibitor, Bcl-XL. Importantly, phosphorylation of DAPK2 by AMPK enhances DAPK2's ability to phosphorylate Beclin-1, and depletion of DAPK2 reduces autophagy in response to AMPK activation. Our study reveals a unique calmodulin-independent mechanism for DAPK2 activation, critical to its function as a novel downstream effector of AMPK in autophagy.


Assuntos
Adenilato Quinase/metabolismo , Autofagia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Estresse Fisiológico , Células A549 , Sequência de Aminoácidos , Animais , Proteína Beclina-1/metabolismo , Catálise , Proteínas Quinases Associadas com Morte Celular/química , Dimerização , Células HCT116 , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Fosforilação , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Treonina/metabolismo , Proteína bcl-X/metabolismo
11.
Cell Cycle ; 16(21): 2003-2010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933588

RESUMO

Autophagy is critical for homeostasis and cell survival during stress, but can also lead to cell death, a little understood process that has been shown to contribute to developmental cell death in lower model organisms, and to human cancer cell death. We recently reported 1 on our thorough molecular and morphologic characterization of an autophagic cell death system involving resveratrol treatment of lung carcinoma cells. To gain mechanistic insight into this death program, we performed a signalome-wide RNAi screen for genes whose functions are necessary for resveratrol-induced death. The screen identified GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, as an important mediator of autophagic cell death. Here we further show the physiological relevance of GBA1 to developmental cell death in midgut regression during Drosophila metamorphosis. We observed a delay in midgut cell death in two independent Gba1a RNAi lines, indicating the critical importance of Gba1a for midgut development. Interestingly, loss-of-function GBA1 mutations lead to Gaucher Disease and are a significant risk factor for Parkinson Disease, which have been associated with defective autophagy. Thus GBA1 is a conserved element critical for maintaining proper levels of autophagy, with high levels leading to autophagic cell death.


Assuntos
Autofagia/fisiologia , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Animais , Drosophila/metabolismo , Humanos , Lisossomos/ultraestrutura , Doença de Parkinson/genética
12.
Cell Death Differ ; 24(7): 1288-1302, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28574511

RESUMO

Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant decrease in cytoplasmic area occupied by autophagic vacuoles. Together, these findings highlight the critical role of GBA1 in mediating enhanced self-consumption of intracellular components and endomembranes, leading to autophagic cell death.


Assuntos
Autofagia , Glucosilceramidase/metabolismo , Interferência de RNA , Transdução de Sinais , Células A549 , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Necrose , Interferência de RNA/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Estilbenos/farmacologia
13.
Genes Dev ; 30(17): 1991-2004, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664238

RESUMO

Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.


Assuntos
Diferenciação Celular/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Humanas/citologia , Apoptose/genética , Corpos Embrioides/patologia , Fator de Iniciação Eucariótico 4G/genética , Técnicas de Silenciamento de Genes , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Células-Tronco Pluripotentes/fisiologia
14.
Cell Rep ; 8(3): 909-21, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25066129

RESUMO

Apoptosis and autophagy are distinct biological processes, each driven by a different set of protein-protein interactions, with significant crosstalk via direct interactions among apoptotic and autophagic proteins. To measure the global profile of these interactions, we adapted the Gaussia luciferase protein-fragment complementation assay (GLuc PCA), which monitors binding between proteins fused to complementary fragments of a luciferase reporter. A library encompassing 63 apoptotic and autophagic proteins was constructed for the analysis of ∼3,600 protein-pair combinations. This generated a detailed landscape of the apoptotic and autophagic modules and points of interface between them, identifying 46 previously unknown interactions. One of these interactions, between DAPK2, a Ser/Thr kinase that promotes autophagy, and 14-3-3τ, was further investigated. We mapped the region responsible for 14-3-3τ binding and proved that this interaction inhibits DAPK2 dimerization and activity. This proof of concept underscores the power of the GLuc PCA platform for the discovery of biochemical pathways within the cell death network.


Assuntos
Apoptose/genética , Autofagia/genética , Redes Reguladoras de Genes , Proteínas 14-3-3/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica
15.
Apoptosis ; 19(2): 286-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220854

RESUMO

DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK's activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Animais , Apoptose , Proteínas Quinases Associadas com Morte Celular/química , Proteínas Quinases Associadas com Morte Celular/genética , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
16.
Apoptosis ; 19(2): 316-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24220855

RESUMO

DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1ß production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.


Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Animais , Apoptose , Morte Celular , Ativação Enzimática , Estabilidade Enzimática , Humanos , Transdução de Sinais , Especificidade por Substrato
17.
Apoptosis ; 19(2): 346-56, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24264886

RESUMO

DAP-kinase (DAPK) is a Ca(2+)-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Proteínas Quinases Associadas com Morte Celular/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Citoesqueleto/metabolismo , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Fosforilação , Proteínas Supressoras de Tumor/metabolismo
18.
Biochem Soc Trans ; 40(5): 1052-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988864

RESUMO

DAPK (death-associated protein kinase) is a newly recognized member of the mammalian family of ROCO proteins, characterized by common ROC (Ras of complex proteins) and COR (C-terminal of ROC) domains. In the present paper, we review our recent work showing that DAPK is functionally a ROCO protein; its ROC domain binds and hydrolyses GTP. Furthermore, GTP binding regulates DAPK catalytic activity in a novel manner by enhancing autophosphorylation on inhibitory Ser308, thereby promoting the kinase 'off' state. This is a novel mechanism for in cis regulation of kinase activity by the distal ROC domain. The functional similarities between DAPK and the Parkinson's disease-associated protein LRRK2 (leucine-rich repeat protein kinase 2), another member of the ROCO family, are also discussed.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Quinases Associadas com Morte Celular , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
19.
Am J Respir Cell Mol Biol ; 46(3): 313-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21997486

RESUMO

Death-associated protein kinase (DAPk) is a tumor suppressor thought to inhibit cancer by promoting apoptosis and autophagy. Because cancer progression is linked to inflammation, we investigated the in vivo functions of DAPk in lung responses to various acute and chronic inflammatory stimuli. Lungs of DAPk knockout (KO) mice secreted higher concentrations of IL-6 and keratinocyte chemoattractant (or chemokine [C-X-C motif] ligand 1) in response to transient intranasal administrations of the Toll-like receptor-4 (TLR4) agonist LPS. In addition, DAPk-null macrophages and neutrophils were hyperresponsive to ex vivo stimulation with LPS. DAPk-null neutrophils were also hyperresponsive to activation via Fc receptor and Toll-like receptor-3, indicating that the suppressive functions of this kinase are not restricted to TLR4 pathways. Even after the reconstitution of DAPk-null lungs with DAPk-expressing leukocytes by transplanting wild-type (WT) bone marrow into lethally irradiated DAPk KO mice, the chimeric mice remained hypersensitive to both acute and chronic LPS challenges, as well as to tobacco smoke exposure. DAPk-null lungs reconstituted with WT leukocytes exhibited elevated neutrophil content and augmented cytokine secretion in the bronchoalveolar space, as well as enhanced epithelial cell injury in response to both acute and chronic inflammatory conditions. These results suggest that DAPk attenuates a variety of inflammatory responses, both in lung leukocytes and in lung epithelial cells. The DAPk-mediated suppression of lung inflammation and airway injury may contribute to the tumor-suppressor functions of this kinase in epithelial carcinogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Pulmão/enzimologia , Pneumonia/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Transplante de Medula Óssea , Proteínas Quinases Dependentes de Cálcio-Calmodulina/deficiência , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Quimiocina CXCL1/metabolismo , Proteínas Quinases Associadas com Morte Celular , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Pulmão/imunologia , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/enzimologia , Pneumonia/imunologia , Receptores Fc/metabolismo , Fatores de Tempo , Poluição por Fumaça de Tabaco , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Quimeras de Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA