Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38782594

RESUMO

BACKGROUND AND PURPOSE: Imaging assessment of brain frailty in ischemic stroke has been extensively studied, while the correlation between brain frailty and Moyamoya disease remains obscure. This study aimed to investigate the imaging characteristics of brain frailty and its clinical applications in Moyamoya disease. MATERIALS AND METHODS: This study included 60 patients with Moyamoya disease (107 hemispheres). All patients were divided into stroke and nonstroke groups based on clinical symptoms and imaging findings. The modified brain frailty score was adapted to consider 4 imaging signs: white matter hyperintensity, enlargement of perivascular space, old vascular lesions, and cerebral microbleed. The relative CBF of the MCA territory was quantified using pseudocontinuous arterial-spin labeling. Surgical outcome after revascularization surgery was defined by the Matsushima grade. RESULTS: The relative CBF of the MCA territory decreased as the modified brain frailty score and periventricular white matter hyperintensity grades increased (ρ = -0.22, P = .02; ρ = -0.27, P = .005). Clinically, the modified brain frailty score could identify patients with Moyamoya disease with stroke (OR = 2.00, P = .02). Although the modified brain frailty score showed no predictive value for surgical outcome, basal ganglia enlargement of the perivascular space had a significant correlation with the postoperative Matsushima grade (OR = 1.29, P = .03). CONCLUSIONS: The modified brain frailty score could reflect a cerebral perfusion deficit and clinical symptoms of Moyamoya disease, and its component basal ganglia enlargement of perivascular space may be a promising marker to predict surgical outcome and thus aid future clinical decision-making.

2.
Eur Radiol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337069

RESUMO

OBJECTIVES: We aim to investigate whether cerebral small vessel disease (cSVD) imaging markers correlate with deep medullary vein (DMV) damage in small vessel occlusion acute ischemic stroke (SVO-AIS) patients. METHODS: The DMV was divided into six segments according to the regional anatomy. The total DMV score (0-18) was calculated based on segmental continuity and visibility. The damage of DMV was grouped according to the quartiles of the total DMV score. Neuroimaging biomarkers of cSVD including white matter hyperintensity (WMH), cerebral microbleed (CMB), perivascular space (PVS), and lacune were identified. The cSVD score were further analyzed. RESULTS: We included 229 SVO-AIS patients, the mean age was 63.7 ± 23.1 years, the median NIHSS score was 3 (IQR, 2-6). In the severe DMV burden group (the 4th quartile), the NIHSS score grade (6 (3-9)) was significantly higher than other groups (p < 0.01). The grade scores for basal ganglia PVS (BG-PVS) were positively correlated with the degree of DMV (R = 0.67, p < 0.01), rather than centrum semivole PVS (CS-PVS) (R = 0.17, p = 0.1). In multivariate analysis, high CMB burden (adjusted odds ratio [aOR], 25.38; 95% confidence interval [CI], 1.87-345.23) was associated with severe DMV scores. In addition, BG-PVS was related to severe DMV burden in a dose-dependent manner: when BG-PVS score was 3 and 4, the aORs of severe DMV burden were 18.5 and 12.19, respectively. CONCLUSION: The DMV impairment was associated with the severity of cSVD, which suggests that DMV burden may be used for risk stratification in SVO-AIS patients. CLINICAL RELEVANCE STATEMENT: The DMV damage score, based on the association between small vessel disease and the deep medullary veins impairment, is a potential new imaging biomarker for the prognosis of small vessel occlusion acute ischemic stroke, with clinical management implications. KEY POINTS: • The damage to the deep medullary vein may be one mechanism of cerebral small vessel disease. • Severe burden of the basal ganglia perivascular space and cerebral microbleed is closely associated with significant impairment to the deep medullary vein. • The deep medullary vein damage score may reflect a risk of added vascular damage in small vessel occlusion acute ischemic stroke patients.

3.
Neural Regen Res ; 19(9): 2075-2080, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227538

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00041/figure1/v/2024-01-16T170235Z/r/image-tiff The safety and effectiveness of magnetic resonance-guided focused ultrasound thalamotomy has been broadly established and validated for the treatment of essential tremor. In 2018, the first magnetic resonance-guided focused ultrasound system in Chinese mainland was installed at the First Medical Center of the PLA General Hospital. This prospective, single center, open-label, single-arm study was part of a worldwide prospective multicenter clinical trial (ClinicalTrials.gov Identifier: NCT03253991) conducted to confirm the safety and efficacy of magnetic resonance-guided focused ultrasound for treating essential tremor in the local population. From 2019 to 2020, 10 patients with medication refractory essential tremor were recruited into this open-label, single arm study. The treatment efficacy was determined using the Clinical Rating Scale for Tremor. Safety was evaluated according to the incidence and severity of adverse events. All of the subjects underwent a unilateral thalamotomy targeting the ventral intermediate nucleus. At the baseline assessment, the estimated marginal mean of the Clinical Rating Scale for Tremor total score was 58.3 ± 3.6, and this improved after treatment to 23.1 ± 6.4 at a 12-month follow-up assessment. A total of 50 adverse events were recorded, and 2 were defined as serious. The most common intraoperative adverse events were nausea and headache. The most frequent postoperative adverse events were paresthesia and equilibrium disorder. Most of the adverse events were mild and usually disappeared within a few days. Our findings suggest that magnetic resonance-guided focused ultrasound for the treatment of essential tremor is effective, with a good safety profile, for patients in Chinese mainland.

4.
J Magn Reson Imaging ; 59(4): 1358-1370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37491872

RESUMO

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE: To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE: Retrospective. SUBJECTS: Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE: A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT: Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS: Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS: For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION: These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 4.


Assuntos
Tremor Essencial , Substância Branca , Masculino , Humanos , Imagem de Tensor de Difusão , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Tremor , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento
5.
J Magn Reson Imaging ; 59(5): 1620-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37559435

RESUMO

BACKGROUND: Ultra-high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. PURPOSE: To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. STUDY TYPE: Prospective. POPULATION: 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. SEQUENCE AND FIELD STRENGTH: T1-weighted nonenhanced or contrast-enhanced magnetization-prepared rapid acquisition gradient-echo sequence at both 3T and 7T. ASSESSMENT: A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast-enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5-point Likert scales. STATISTICAL TESTS: Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. RESULTS: Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast-enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast-enhanced subgroups (P ≥ 0.180). DATA CONCLUSION: The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
6.
J Magn Reson Imaging ; 59(1): 340-349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183874

RESUMO

BACKGROUND: Global brain health has gained increasing attention recently. Imaging markers of brain frailty have been related to functional outcomes in previous studies on anterior circulation; however, little data are available on imaging markers and posterior circulation. PURPOSE: To investigate the impact of brain frailty on functional outcomes in patients with acute perforating artery infarction (PAI) of the posterior circulation. STUDY TYPE: Prospective. POPULATION: One hundred patients (60.78 ± 9.51 years, 72% men) with acute posterior circulation PAI (determined by diffusion-weighted magnetic resonance imaging (MRI)/time-of-flight MR angiography). FIELD STRENGTH/SEQUENCE: T1- and T2-weighted fast spin echo, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted echo planar, gradient echo (susceptibility-weight imaging), and 3D time-of-flight MR angiography sequences at 3.0 T. ASSESSMENT: Periventricular and deep white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS) in the basal ganglia and centrum semiovale area, lacunes, cerebral microbleeds (CMB), and total brain frailty score by calculating the above imaging characters were rated visually by three radiologists with 9, 10, and 11 years of experience and one neuroradiologist with 12. Infarction volume was assessed using baseline diffusion-weighted imaging (DWI) data obtained within 24 hours of symptom onset. A modified Rankin Scale (mRS) score >1 on day 90 defined an adverse functional outcome. Associations between the imaging markers of brain frailty and functional outcomes were assessed. STATISTICAL TESTS: Fisher's exact test, Mann-Whitney U test, and multivariable binary logistic regression. A P value <0.05 was considered statistically significant. RESULTS: Adverse prognoses (mRS > 1) were observed in 34 (34%) patients. Infarction volume, periventricular WMH, deep WMH, basal ganglia EPVS, CMB, and the brain frailty score were significantly associated with adverse functional outcomes. An increased brain frailty score was significantly associated with unfavorable mRS score on day 90 (odds ratio 1.773, 95% confidence interval 1.237-2.541). DATA CONCLUSION: Advanced MRI imaging markers of brain frailty, individually or combined as a total brain frailty score, were associated with worse functional outcomes after acute posterior circulation PAI. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.


Assuntos
Fragilidade , Masculino , Humanos , Feminino , Estudos Prospectivos , Fragilidade/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Artérias , Infarto
7.
Radiology ; 309(2): e230681, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962500

RESUMO

Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, P = .35; external validation set, P > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zhang and Turkbey in this issue.


Assuntos
Aorta , Angiografia por Tomografia Computadorizada , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Artérias Carótidas
8.
Ann Neurol ; 94(6): 1168-1181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635687

RESUMO

OBJECTIVE: Migraine has been demonstrated to exhibit abnormal functional connectivity of large-scale brain networks, which is closely associated with its pathophysiology and has not yet been explored by edge functional connectivity. We used an edge-centric approach combined with motif analysis to evaluate higher-order communication patterns of brain networks in migraine. METHODS: We investigated edge-centric metrics in 108 interictal migraine patients and 71 healthy controls. We parcellated the brain into networks using independent component analysis. We applied edge graph construction, k-means clustering, community overlap detection, graph-theory-based evaluations, and clinical correlation analysis. We conducted motif analysis to explore the interactions among regions, and a classification model to test the specificity of edge-centric results. RESULTS: The normalized entropy of lateral thalamus was significantly increased in migraine, which was positively correlated with the baseline headache duration, and negatively correlated with headache duration reduction following preventive medications at 3-month follow-up. Network-wise entropy of the sensorimotor network was significantly elevated in migraine. The community similarity between lateral thalamus and postcentral gyrus was enhanced in migraine. Migraine patients showed overrepresented L-shape and diverse motifs, and underrepresented forked motifs with lateral thalamus serving as the reference node. Furthermore, migraine patients presented with overrepresented L-shape triads, where the postcentral gyrus shared different edges with the lateral thalamus. The classification model showed that entropy of the lateral thalamus had the highest discriminative power, with an area under the curve of 0.86. INTERPRETATION: Our findings indicated an abnormal higher-order thalamo-cortical communication pattern in migraine patients. The thalamo-cortical-somatosensory disturbance of concerted working may potentially lead to aberrant information flow and deficit pain processing of migraine. ANN NEUROL 2023;94:1168-1181.


Assuntos
Imageamento por Ressonância Magnética , Transtornos de Enxaqueca , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos de Enxaqueca/diagnóstico por imagem , Encéfalo , Tálamo/diagnóstico por imagem , Cefaleia
9.
Quant Imaging Med Surg ; 13(7): 4415-4428, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37456281

RESUMO

Background: Regional differences in gray matter volume (GMV) have been reported to be a reliable marker for diagnosing Parkinson's disease (PD). This study aimed to explore the clinical value of GMV to assess magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy as a treatment for tremor-dominant PD (TDPD). Methods: Nine TDPD patients with MRgFUS thalamotomy were recruited for structural magnetic resonance image (MRI) scanning and clinical score evaluation. GMV was calculated. To investigate changes after treatment, voxel- and region of interest (ROI)-wise GMV analyses were performed. Then, GMV with significant differences was extracted from patients to investigate its dynamic alterations by one-way repeated-measures analysis of variance (ANOVA). The nonparametric Spearman rank correlation analysis was used to evaluate the relationship between GMV alterations and tremor improvement after thalamotomy. Results: Tremors were significantly relieved after MRgFUS thalamotomy in nine patients (P<0.05). The treated hand tremor scores improved 74.82% on average in patients from pre-operation to 12 months post-operation. Voxel-wise analysis at the cluster level showed a significant decrease in GMV in the left middle occipital gyrus (MOG) [t=11.81, voxel-level P<0.001, cluster-level Pfamily-wise error (FWE) <0.05] and an increase in GMV in the left precentral gyrus (PreCG) (t=7.99, voxel-level P<0.001, cluster-level PFWE <0.05) in TDPD patients from preoperative to 12 months post-operation, which was significantly correlated with tremor scores (rho =0.346-0.439, P<0.05). ROI-wise analysis showed that GMV related to MRgFUS thalamotomy was associated with long-term structural alterations (P<0.05 with Bonferroni correction), including specific basal ganglia and related nuclei and cerebellum subregions. Conclusions: GMV can be used to reflect tremor improvement after MRgFUS thalamotomy and be helpful to better understand the distant effect of MRgFUS thalamotomy and the involvement of GMV in tremor control in TDPD. Trial Registration: ClinicalTrials.gov identifier: NCT04570046.

10.
J Magn Reson Imaging ; 58(3): 732-738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36594577

RESUMO

BACKGROUND: Glioma genotypes are of importance for clinical decision-making. This data can only be acquired through histopathological analysis based on resection or biopsy. Consequently, there is a need for alternative biomarkers that noninvasively provide reliable information for preoperatively identifying molecular characteristics. PURPOSE: To investigate apparent diffusion coefficient (ADC) as imaging biomarker for preoperatively identifying glioma genotypes based on the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors. STUDY TYPE: Retrospective. SUBJECTS: One hundred and fifty-nine patients (47.6 ± 14.4 years) diagnosed with WHO grade 2-4 glioma including 93 males and 66 females. FIELD STRENGTH/SEQUENCE: A 3 T/spin echo echo planner imaging. ASSESSMENT: The ADC measurements were assessed by two neuroradiologists (both with 6 years of experience). Three different lowest portions inside the tumors without overlap were manually drawn on the ADC maps as regions of interest (ROIs). The mean ADC value of the three ROIs was defined as the minimum ADC value (ADCmin ). An ROI was placed in the contralateral normal appearing white matter (NAWM) to obtain the ADC value (ADCNAWM ). The ADCmin to ADCNAWM ratio (ADCratio ) was calculated. Genetics results were retrospectively recorded from pathologic and genetic test reports. STATISTICAL TESTS: Two-sample independent t-tests, receiver operating characteristic curve analysis, and intraclass correlation coefficient analysis were used. Statistical significance was set at P < 0.05. RESULTS: Isocitrate dehydrogenase (IDH)-mutated glioma showed higher ADCmin and ADCratio than IDH wild-type glioma. Among IDH-mutated glioma, higher ADCmin and ADCratio were found in 1p19q intact glioma than in 1p19q codeletion glioma. ADC parameters enabled differentiation of IDH mutation status with area under the curve (AUC) of 0.84 and 0.86. DATA CONCLUSION: ADC has potential discriminative value for IDH mutation and 1p19q codeletion status. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Glioma/diagnóstico por imagem , Glioma/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Isocitrato Desidrogenase/genética , Mutação , Regiões Promotoras Genéticas , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Imagem de Difusão por Ressonância Magnética , Estudos Retrospectivos , Idoso
11.
CNS Neurosci Ther ; 29(4): 1024-1033, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650639

RESUMO

AIMS: Our purpose is to assess the role of cerebral small vessel disease (SVD) in prediction models in patients with different subtypes of acute ischemic stroke (AIS). METHODS: We enrolled 398 small-vessel occlusion (SVO) and 175 large artery atherosclerosis (LAA) AIS patients. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. MRI was performed to assess white matter hyperintensity (WMH), perivascular space (PVS), lacune, and cerebral microbleed (CMB). Logistic regression (LR) and machine learning (ML) were used to develop predictive models to assess the influences of SVD on the prognosis. RESULTS: In the feature evaluation of SVO-AIS for different outcomes, the modified total SVD score (Gain: 0.38, 0.28) has the maximum weight, and periventricular WMH (Gain: 0.07, 0.09) was more important than deep WMH (Gain: 0.01, 0.01) in prognosis. In SVO-AIS, SVD performed better than regular clinical data, which is the opposite of LAA-AIS. Among all models, eXtreme gradient boosting (XGBoost) method with optimal index (OI) has the best performance to predict excellent outcome in SVO-AIS. [0.91 (0.84-0.97)]. CONCLUSIONS: Our results revealed that different SVD markers had distinct prognostic weights in AIS patients, and SVD burden alone may accurately predict the SVO-AIS patients' prognosis.


Assuntos
Aterosclerose , Doenças de Pequenos Vasos Cerebrais , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Efeitos Psicossociais da Doença , Aprendizado de Máquina , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
12.
J Magn Reson Imaging ; 57(4): 1241-1247, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35849055

RESUMO

BACKGROUND: Arterial spin labeling (ASL) has shown potential for the assessment of penumbral tissue in patients with acute ischemic stroke (AIS). The postlabeling delay (PLD) parameter is sensitive to arterial transit delays and influences cerebral blood flow measurements. PURPOSE: To assess the impact of ASL acquisition at different PLDs for penumbral tissue quantification and to compare their performance regarding assisting patient selection for endovascular treatment with dynamic susceptibility contrast MRI (DSC-MRI) as the reference method. STUDY TYPE: Retrospective. POPULATION: A total of 53 patients (59.98 ± 12.60 years, 32% women) with AIS caused by internal carotid or middle cerebral artery occlusion. FIELD STRENGTH/SEQUENCE: A 3-T, three-dimensional pseudo-continuous ASL with fast-spin echo readout. ASSESSMENT: Hypoperfusion volume was measured using DSC-MRI and ASL with PLDs of 1.500 msec and 2.500 msec, respectively. Eligibility for endovascular treatment was retrospectively determined according to the imaging criteria of the Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke trial (DEFUSE 3). STATISTICAL TESTS: Kruskal-Wallis tests, Bland-Altman plots, Cohen's kappa, and receiver operating characteristic analyses were used. The threshold for statistical significance was set at P Ë‚ 0.05. RESULTS: Hypoperfusion volume for ASL with a PLD of 1.500 msec was significantly larger than that for DSC-MRI, while the hypoperfusion volume for a PLD of 2.500 msec was not significantly different from that of DSC-MRI (P = 0.435). Bland-Altman plots showed that the mean volumetric error between the hypoperfusion volume measured by DSC-MRI and ASL with PLDs of 1.500/2.500 msec was -107.0 mL vs. 4.49 mL. Cohen's kappa was 0.679 vs. 0.773 for DSC-MRI and ASL, respectively, with a PLD of 1.500/2.500 msec. The sensitivity and specificity for ASL with a PLD of 1.500/2.500 msec in identifying patients eligible for treatment were 89.74% vs. 97.44% and 92.86% vs. 64.29%, respectively. DATA CONCLUSION: In AIS, PLDs for ASL acquisition may have a considerable impact on the quantification of the hypoperfusion volume. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Artérias , Marcadores de Spin , Circulação Cerebrovascular/fisiologia
13.
CNS Neurosci Ther ; 29(2): 559-565, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468424

RESUMO

AIM: This study aimed to evaluate the diagnostic value of ultrahigh-field magnetic resonance imaging (MRI) for brain tumors in clinical practice. METHODS: Thirty patients with brain tumors underwent 7- and 3-T MRI. The performance and diagnostic confidence of 7- and 3-T MRI in the visualization of tumor details such as internal structure and feeding artery were evaluated by radiologists. Contrast-enhanced region performance and tumor detail diagnostic confidence score (DCS) were calculated and compared between 7 and 3T using Wilcoxon rank sum test. RESULTS: In 19 with obvious enhancement and 11 cases without obvious enhancement, 7- and 3-T MRI showed similar performance. The tumors' internal structure and feeding artery were more clearly depicted by 7-T MRI (62.2% and 54.4%, respectively) than by 3-T MRI (2.2% and 6.7%, respectively). Furthermore, the mean DCSs of both internal structure and feeding artery were higher at 7T than at 3T (internal structure: 16.29 ± 9.67 vs. -5.79 ± 4.12, p = 0.028; feeding artery: 21.96 ± 6.93 vs. 4.46 ± 7.07, p = 0.028). The DCS was more significantly improved in the senior radiologist group. CONCLUSION: Better visualization of brain tumor details and higher tumor detail diagnostic confidence can be obtained with 7-T MRI.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem
14.
Stroke Vasc Neurol ; 8(1): 69-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36219570

RESUMO

BACKGROUND AND PURPOSE: Individuals with intracranial artery occlusion have high rates of ischaemic events and recurrence. It has been challenging to identify patients who had high-risk stroke using a simple, valid and non-invasive screening approach. This study aimed to investigate whether fluid-attenuated inversion recovery (FLAIR) vascular hyperintensity (FVH), a specific imaging sign on the FLAIR sequence, could be a predictor of ischaemic events in a population with internal carotid artery (ICA) or middle cerebral artery (MCA) occlusion. METHODS: We retrospectively analysed 147 patients (mean 60.43±12.83 years) with 149 lesions, including 37 asymptomatic and 112 symptomatic cases of ICA or MCA occlusion. Symptomatic occlusion was considered if ischaemic events were present in the relevant territory within 90 days. FVH Alberta Stroke Program Early Computed Tomography Score (FVH-ASPECTS: 0-7, with 0 indicating absence of FVH and 7 suggesting prominent FVH) and collateral circulation grade were assessed for each participant. Multivariable logistic regression analysis was performed to detect independent markers associated with symptomatic status. RESULTS: A lower FVH-ASPECTS was associated with a more favourable collateral circulation grade (rho=-0.464, p<0.0001). The FVH-ASPECTS was significantly lower in the asymptomatic occlusion group than in the symptomatic occlusion group (p<0.0001). FVH-ASPECTS (Odd ratio, 2.973; 95% confidence interval, 1.849 to 4.781; p<0.0001) was independently associated with symptomatic status after adjustment for age, sex, lesion location and collateral circulation grade in the multivariate logistic regression. The area under the curve was 0.861 for the use of FVH-ASPECTS to identify symptomatic occlusion. CONCLUSIONS: The ability to discriminate symptomatic from asymptomatic occlusion suggests that FVH may be a predictor of stroke. As a simple imaging sign, FVH may serve as a surrogate for haemodynamic impairments and can be used to identify high-risk stroke cases early in ICA or MCA occlusion.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Humanos , Infarto da Artéria Cerebral Média/patologia , Artéria Carótida Interna , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
15.
Transl Stroke Res ; 14(1): 73-82, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35877061

RESUMO

The interaction effect between collateral circulation and ischemic core size on stroke outcomes has been highlighted in acute ischemic stroke (AIS). However, biomarkers that assess the magnitude of this interaction are still lacking. We aimed to present a new imaging marker, the collateral-core ratio (CCR), to quantify the interaction effect between these factors and evaluate its ability to predict functional outcomes using machine learning (ML) in AIS. Patients with AIS caused by anterior circulation large vessel occlusion (LVO) were recruited from a prospective multicenter study. CCR was calculated as collateral perfusion volume/ischemic core volume. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days. An ML model was built and tested with a tenfold cross-validation using nine clinical and four imaging variables with mRS score 3-6 as unfavorable outcomes. Among 129 patients, CCR was identified as the most important variable. The prediction model incorporating clinical factors, ischemic core volume, collateral perfusion volume, and CCR showed better discriminatory power in predicting unfavorable outcomes than the model without CCR (mean C index 0.853 ± 0.108 versus 0.793 ± 0.133, P = 0.70; mean net reclassification index 52.7% ± 32.7%, P < 0.05). When patients were divided into two groups based on their CCR value with a threshold of 0.73, unfavorable outcomes were significantly more prevalent in patients with CCR ≤ 0.73 than in those with CCR > 0.73. CCR is a robust predictor of functional outcomes, as identified by ML, in patients with acute LVO. The prediction model that incorporated CCR improved the model's ability to identify unfavorable outcomes. ClinicalTrials.gov Identifier: NCT02580097.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/complicações , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Circulação Colateral
16.
Neurosurg Focus ; 53(6): E5, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455269

RESUMO

OBJECTIVE: Although magnetic resonance-guided focused ultrasound (MRgFUS) at the ventral intermediate (VIM) thalamic nucleus is a novel and effective treatment for medication-refractory essential tremor (ET), it is unclear how the ablation lesion affects functional activity. The current study sought to evaluate the functional impact of MRgFUS thalamotomy in patients with ET, as well as to investigate the relationship between neuronal activity changes and tremor control. METHODS: This study included 30 patients with ET who underwent MRgFUS thalamotomy with a 6-month follow-up involving MRI and clinical tremor rating. Additional sex- and age-matched healthy people were recruited for the healthy control group. The fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity were used to identify functional alteration regions of interest (ROIs). To investigate changes after treatment, ROI- and seed-based functional connectivity (FC) analyses were performed. RESULTS: Patients with ET had significantly increased fALFF in the right postcentral gyrus (PoCG; ROI 1), regional homogeneity in the left PoCG (ROI 2), and regional homogeneity in the right PoCG (ROI 3, cluster-level p value family-wise error [pFWE] < 0.05), which were recovered and normalized at 6 months after MRgFUS thalamotomy. FCs between ROI 2 and the right supramarginal gyrus, ROI 2 and the right superior parietal gyrus, and ROI 3 and the left precentral gyrus were also found to be increased after treatment (cluster-level pFWE < 0.05). Furthermore, changes in fALFF, regional homogeneity, and FC values were significantly correlated with tremor relief (p < 0.05). Preoperative FC strengths were found to be inversely related to the postoperative tremor control ratio (p < 0.05). CONCLUSIONS: In patients with ET, the VIM lesion of MRgFUS thalamotomy resulted in symptom-related regional functional recovery associated with sensorimotor and attention networks. Preoperative FC strengths may reflect the postoperative tremor control ratio, implying that this metric could be a useful neuroimaging biomarker for predicting symptom relief in patients with ET following thalamotomy.


Assuntos
Tremor Essencial , Psicocirurgia , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Tremor , Ultrassonografia , Núcleos Talâmicos
17.
Neurotherapeutics ; 19(6): 1920-1931, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36085538

RESUMO

MRI-guided focused ultrasound (MRgFUS) thalamotomy is a novel, effective, and non-invasive treatment for essential tremor (ET). However, the network mediating MRgFUS in treating ET is not precisely known. This study aimed to identify the disease-specific network associated with the therapeutic effects of MRgFUS thalamotomy on ET and investigate its regional characteristics and genetic signatures to gain insights into the neurobiological mechanism of ET and MRgFUS thalamotomy. Twenty-four ET patients treated with MRgFUS thalamotomy underwent resting-state functional MRI at baseline and postoperative 6 months to measure the fractional amplitude of low-frequency fluctuation (fALFF). Ordinal trends canonical variates analysis (OrT/CVA) was performed on the within-subject fALFF data to identify the ET-related network. Genetic functional enrichment analysis was conducted to study the genetic signatures of this ET-related network using brain-wide gene expression data. OrT/CVA analysis revealed a significant ET-related network for which subject expression showed consistent increases after surgery. The treatment-induced increases in subject expression were significantly correlated with concurrent tremor improvement. This network was characterized by increased activity in the sensorimotor cortex and decreased activity in the posterior cingulate cortex. It was correlated with an expression map of a weighted combination genes enriched for mitochondria relevant ontology terms. This study demonstrates that the therapeutic effects of MRgFUS thalamotomy on ET are associated with modulating a distinct ET-related network which may be driven by mitochondria relevant neurobiological mechanism. Quantification of treatment-induced modulation on the ET-related network can provide an objective marker for evaluating the efficacy of MRgFUS thalamotomy.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética , Encéfalo , Resultado do Tratamento
18.
Eur Radiol ; 32(8): 5436-5445, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35278120

RESUMO

OBJECTIVES: The prognostic value of fluid-attenuated inversion recovery vessel hyperintensity (FVH) remains controversial in acute ischemic stroke (AIS). The objective was to investigate whether the presence of FVH could predict long-term functional outcomes in patients with AIS receiving medical therapy. METHODS: Consecutive AIS patients with anterior circulation large vessel stenosis (LVS) in multiple centers between January 2019 and December 2020 were studied. Presence of FVH was identified and evaluated as FVH (+). Quantification of FVH was performed using an FVH-Alberta Stroke Program Early CT Score (ASPECTS) system and divided into grades: FVH-ASPECTS of 0 = grade 0; 1-2 = grade 1; 3-7 = grade 2. Poor functional outcome was defined as modified Rankin scale > 2 at 3 months. RESULTS: Overall, 175 patients were analyzed (age, 64.31 ± 13.47 years; men, 65.1%), and 78.9% patients presented with FVH. Larger infarct volume (19.90 mL vs. 5.50 mL, p < 0.001), higher rates of FVH (+) (92.0% vs. 65.9%, p < 0.001), and higher FVH grades (grade 2, 34.5% vs. 10.2%, p < 0.001) were more prone to be observed in patients with poor functional outcomes. FVH (+) with infarct volume larger than 6.265 mL (adjusted odds ratio [aOR] 6.03, 95% confidence interval [CI] 1.82-19.98) and FVH grade (grade 1, aOR 3.07, 95% CI 1.12-8.43; grade 2, aOR 5.80, 95% CI 1.59-21.11) were independently associated with poor functional outcomes. CONCLUSION: FVH (+) combined with large infarct volume and high FVH grade can predict poor long-term functional outcomes in patients with LVS who receive medical therapy. KEY POINTS: • FVH is expected to be a contrast agent-independent alternative for assessing hemodynamic status in the acute stage of stroke. • FVH (+) and high FVH grade, quantified by FVH-ASPECTS rating system and grades, are associated with large infarct volume. • The combination of FVH and DWI-based infarct volume has independent predictive value for long-term functional outcomes in AIS patients with large artery stenosis treated with medical therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Constrição Patológica , Humanos , Infarto , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/tratamento farmacológico , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico
19.
Eur Radiol ; 32(8): 5679-5687, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35182203

RESUMO

OBJECTIVES: Susceptibility-weighted imaging (SWI) is crucial for the characterization of intracranial hemorrhage and mineralization, but has the drawback of long acquisition times. We aimed to propose a deep learning model to accelerate SWI, and evaluate the clinical feasibility of this approach. METHODS: A complex-valued convolutional neural network (ComplexNet) was developed to reconstruct high-quality SWI from highly accelerated k-space data. ComplexNet can leverage the inherently complex-valued nature of SWI data and learn richer representations by using complex-valued network. SWI data were acquired from 117 participants who underwent clinical brain MRI examination between 2019 and 2021, including patients with tumor, stroke, hemorrhage, traumatic brain injury, etc. Reconstruction quality was evaluated using quantitative image metrics and image quality scores, including overall image quality, signal-to-noise ratio, sharpness, and artifacts. RESULTS: The average reconstruction time of ComplexNet was 19 ms per section (1.33 s per participant). ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). Meanwhile, there was no significant difference between fully sampled and ComplexNet approaches in terms of overall image quality and artifacts (p > 0.05) at both acceleration rates. Furthermore, ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor. CONCLUSIONS: ComplexNet can effectively accelerate SWI while providing superior performance in terms of overall image quality and visualization of pathology for routine clinical brain imaging. KEY POINTS: • The complex-valued convolutional neural network (ComplexNet) allowed fast and high-quality reconstruction of highly accelerated SWI data, with an average reconstruction time of 19 ms per section. • ComplexNet achieved significantly improved quantitative image metrics compared to a conventional compressed sensing method and a real-valued network with acceleration rates of 5 and 8 (p < 0.001). • ComplexNet showed comparable diagnostic performance to the fully sampled SWI for visualizing a wide range of pathology, including hemorrhage, cerebral microbleeds, and brain tumor.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Hemorragia Cerebral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Neuroimagem
20.
J Neurosurg ; : 1-10, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180696

RESUMO

OBJECTIVE: Tractography-based direct targeting of the ventral intermediate nucleus (T-VIM) is a novel method that provides patient-specific VIM coordinates. This study aimed to explore the accuracy and predictive value of using T-VIM in combination with tractography and resting-state functional connectivity techniques to perform magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy as a treatment of Parkinson's disease (PD). METHODS: PD patients underwent MRgFUS thalamotomy and were recruited for functional MRI scanning. A subscore of the Clinical Rating Scale for Tremor was used to evaluate tremor improvement. T-VIM and surgical VIM (S-VIM) were defined on preoperative diffusion tensor MRI and 24-hour postoperative T1-weighted imaging, respectively. The overlapping volume and center distance between S-VIM and T-VIM were measured to determine their correlations with 12-month postoperative tremor improvement. Moreover, pretherapeutic functional connectivity of T-VIM or S-VIM, based on region-of-interest connectivity and whole-brain seed-to-voxel connectivity, was measured with the resting-state functional connectivity technique to investigate their correlations with tremor improvement. RESULTS: All patients had excellent tremor improvement (mean [range] tremor improvement 74.82% [50.00%-94.44%]). The authors found that both overlapping volume and center distance between T-VIM and S-VIM were significantly correlated with tremor improvement (r = 0.788 and p = 0.012 for overlapping volume; r = -0.696 and p = 0.037 for center distance). Pretherapeutic functional connectivity of T-VIM with the ipsilateral sensorimotor cortex (r = 0.876 and p = 0.002), subthalamic nucleus (r = 0.700 and p = 0.036), and visual area (r = 0.911 and p = 0.001) was significantly and positively correlated with tremor improvement. CONCLUSIONS: T-VIM may improve the clinical application of MRgFUS thalamotomy as a treatment of PD. Pretherapeutic functional connectivity of T-VIM with the ipsilateral sensorimotor cortex, subthalamic nucleus, and visual area may predict PD tremor responses after MRgFUS thalamotomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA