Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124710, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936207

RESUMO

As a unconventional oil, perilla oil is much more expensive than conventional oils since it has the highest content of α-linolenic acid among vegetable oils. Thus the adulteration of perilla oil is serious, which needs to be solved. In this study, the single component oil in perilla oil blends were first quantitatively analyzed by ultraviolet-visible (UV-vis) spectroscopy combined with chemometric methods. Soybean oil and palm oil were added into perilla oil to form binary and ternary perilla oil blends. Partial least squares (PLS), back propagation-artificial neural network (BP-ANN), support vector regression (SVR) and extreme learning machine (ELM) were compared and the best model was selected for calibration. In order to improve the prediction performance of the calibration model, ten preprocessing methods and five variable selection methods were investigated. Results show that PLS was the best calibration method for binary and ternary perilla oil blends. For binary perilla oil blends, the correlation coefficients of prediction (Rp) obtained by PLS were both above 0.99, which does not need preprocessing and variable selection. For ternary perilla oil blends, after the best continuous wavelet transform (CWT) preprocessing and discretized whale optimization algorithm (WOA) variable selection, the Rp values obtained by the best model CWT-WOA-PLS were all above 0.97. This research provides a common framework for calibration of perilla oil blends, which maybe a promising method for quality control of perilla oil in industry.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124016, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354676

RESUMO

As a high-quality edible oil, grapeseed oil is often adulterated with low-price/quality vegetable oils. A novel ensemble modeling method is proposed for quantitative analysis of grapeseed oil adulterations combined with near-infrared (NIR) spectroscopy. The method combines Monte Carlo (MC) sampling and whale optimization algorithm (WOA) to build numerous partial least squares (PLS) sub-models, named MC-WOA-PLS. A total of 80 adulterated grapeseed oil samples were prepared by mixing grapeseed oil with soybean oil, palm oil, cottonseed oil, and corn oil with the designed mass percentages. NIR spectra of the 80 samples were measured in a transmittance mode in the range of 12,000-4000 cm-1. Parameters in MC-WOA-PLS including the number of latent variables (LVs) in PLS, iteration number of WOA, whale number, number of PLS sub-models, and percentage of training subsets were optimized. To validate the prediction performance of the model, root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean squared error of prediction (RMSEP), correlation coefficient (R), residual predictive deviation (RPD), and standard deviation (S.D.) were used. Compared with PLS, standard normal variate-PLS (SNV-PLS), uninformative variable elimination-PLS (UVE-PLS), Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS), randomization test-PLS (RT-PLS), variable importance in projection-PLS (VIP-PLS), and WOA-PLS, MC-WOA-PLS achieves the best prediction accuracy and stability for quantification of the five pure oils in adulterated grapeseed oil samples.

3.
Anal Methods ; 15(39): 5190-5198, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37779476

RESUMO

The blood cholesterol level is strongly associated with cardiovascular disease. It is necessary to develop a rapid method to determine the cholesterol concentration of blood. In this study, a discretized butterfly optimization algorithm-partial least squares (BOA-PLS) method combined with near-infrared (NIR) spectroscopy is firstly proposed for rapid determination of the cholesterol concentration in blood. In discretized BOA, the butterfly vector is described by 1 or 0, which represents whether the variable is selected or not, respectively. In the optimization process, four transfer functions, i.e., arctangent, V-shaped, improved arctangent (I-atan) and improved V-shaped (I-V), are introduced and compared for discretization of the butterfly position. The partial least squares (PLS) model is established between the selected NIR variables and cholesterol concentrations. The iteration number, transfer functions and the performance of butterflies are investigated. The proposed method is compared with full-spectrum PLS, multiplicative scatter correction-PLS (MSC-PLS), max-min scaling-PLS (MMS-PLS), MSC-MMS-PLS, uninformative variable elimination-PLS (UVE-PLS), Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). Results show that the I-V function is the best transfer function for discretization. Both preprocessing and variable selection can improve the prediction performance of PLS. Variable selection methods based on BOA are better than those based on statistics. Furthermore, I-V-BOA-PLS has the highest predictive accuracy among the seven variable selection methods. MSC-MMS can further improve the prediction ability of I-V-BOA-PLS. Therefore, BOA-PLS combined with NIR spectroscopy is promising for the rapid determination of cholesterol concentration in blood.


Assuntos
Borboletas , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados , Algoritmos , Método de Monte Carlo
4.
Molecules ; 28(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687235

RESUMO

As a fast and non-destructive spectroscopic analysis technique, Raman spectroscopy has been widely applied in chemistry. However, noise is usually unavoidable in Raman spectra. Hence, denoising is an important step before Raman spectral analysis. A novel spectral denoising method based on variational mode decomposition (VMD) was introduced to solve the above problem. The spectrum is decomposed into a series of modes (uk) by VMD. Then, the high-frequency noise modes are removed and the remaining modes are reconstructed to obtain the denoised spectrum. The proposed method was verified by two artificial noised signals and two Raman spectra of inorganic materials, i.e., MnCo ISAs/CN and Fe-NCNT. For comparison, empirical mode decomposition (EMD), Savitzky-Golay (SG) smoothing, and discrete wavelet transformation (DWT) are also investigated. At the same time, signal-to-noise ratio (SNR) was introduced as evaluation indicators to verify the performance of the proposed method. The results show that compared with EMD, VMD can significantly improve mode mixing and the endpoint effect. Moreover, the Raman spectrum by VMD denoising is more excellent than that of EMD, SG smoothing and DWT in terms of visualization and SNR. For the small sharp peaks, some information is lost after denoising by EMD, SG smoothing, DWT and VMD while VMD loses fewest information. Therefore, VMD may be an alternative method for Raman spectral denoising.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121788, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058170

RESUMO

The quantification of single oil in high order edible blend oil is a challenging task. In this research, a novel swarm intelligence algorithm, discretized whale optimization algorithm (WOA), was first developed for reducing irrelevant variables and improving prediction accuracy of hexanary edible blend oil samples. The WOA is inspired by hunting strategy of humpback whales, which mainly includes three behaviors, i.e., encircling prey, bubble-net attacking and searching for prey. In discretized WOA, positions of whales were updated and then discretized by arctangent function. The whale population performance, iteration number and whale number of WOA were investigated. To validate the performance of selected variables, partial least squares (PLS) was used to build model and predict single oil contents in hexanary blend oil. Results show that WOA-PLS can provide the best prediction accuracy compared with full-spectrum PLS, continuous wavelet transform-PLS (CWT-PLS), uninformative variable elimination-PLS (UVE-PLS), Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). Furthermore, CWT-WOA-PLS can further produce better results with fewer variables compared with WOA-PLS.


Assuntos
Algoritmos , Espectroscopia de Luz Próxima ao Infravermelho , Inteligência , Análise dos Mínimos Quadrados , Método de Monte Carlo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Front Chem ; 10: 949461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110141

RESUMO

Due to the influence of uncontrollable factors such as the environment and instruments, noise is unavoidable in a spectral signal, which may affect the spectral resolution and analysis result. In the present work, a novel spectral denoising method is developed based on the Hilbert-Huang transform (HHT) and F-test. In this approach, the original spectral signal is first decomposed by empirical mode decomposition (EMD). A series of intrinsic mode functions (IMFs) and a residual (r) are obtained. Then, the Hilbert transform (HT) is performed on each IMF and r to calculate their instantaneous frequencies. The mean and standard deviation of instantaneous frequencies are calculated to further illustrate the IMF frequency information. Third, the F-test is used to determine the cut-off point between noise frequency components and non-noise ones. Finally, the denoising signal is reconstructed by adding the IMF components after the cut-off point. Artificially chemical noised signal, X-ray diffraction (XRD) spectrum, and X-ray photoelectron spectrum (XPS) are used to validate the performance of the method in terms of the signal-to-noise ratio (SNR). The results show that the method provides superior denoising capabilities compared with Savitzky-Golay (SG) smoothing.

7.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014381

RESUMO

A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of a wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) method was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by an ultraviolet-visible (UV-Vis) spectrophotometer. The results demonstrated that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS were all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.


Assuntos
Algoritmos , Óleo de Soja , Análise dos Mínimos Quadrados , Óleo de Amendoim , Óleo de Soja/análise , Espectrofotometria Ultravioleta , Óleo de Girassol
8.
Biosensors (Basel) ; 12(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36004982

RESUMO

The accurate prediction of the model is essential for food and herb analysis. In order to exploit the abundance of information embedded in the frequency and time domains, a weighted multiscale support vector regression (SVR) method based on variational mode decomposition (VMD), namely VMD-WMSVR, was proposed for the ultraviolet-visible (UV-Vis) spectral determination of rapeseed oil adulterants and near-infrared (NIR) spectral quantification of rhizoma alpiniae offcinarum adulterants. In this method, each spectrum is decomposed into K discrete mode components by VMD first. The mode matrix Uk is recombined from the decomposed components, and then, the SVR is used to build sub-models between each Uk and target value. The final prediction is obtained by integrating the predictions of the sub-models by weighted average. The performance of the proposed method was tested with two spectral datasets of adulterated vegetable oils and herbs. Compared with the results from partial least squares (PLS) and SVR, VMD-WMSVR shows potential in model accuracy.


Assuntos
Óleos de Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Óleos de Plantas/análise , Óleo de Brassica napus , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
Foods ; 11(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36010436

RESUMO

Edible oil blends are composed of two or more edible oils in varying proportions, which can ensure nutritional balance compared to oils comprising a single component oil. In view of their economical and nutritional benefits, quantitative analysis of the component oils in edible oil blends is necessary to ensure the rights and interests of consumers and maintain fairness in the edible oil market. Chemometrics combined with modern analytical instruments has become a main analytical technology for the quantitative analysis of edible oil blends. This review summarizes the different oil blend design methods, instrumental techniques and chemometric methods for conducting single component oil quantification in edible oil blends. The aim is to classify and compare the existing analytical techniques to highlight suitable and promising determination methods in this field.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120841, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35033805

RESUMO

In this study, near infrared (NIR) spectroscopy combined with chemometrics was used for the quantitative analysis of corn oil in binary to hexanary edible blend oil. Sesame oil, soybean oil, rice oil, sunflower oil and peanut oil were mixed with corn oil subsequently to form binary, ternary, quaternary, quinary and hexanary blend oil datasets. NIR spectra for the five order blend oil datasets were measured in a transmittance mode in the range of 12000-4000 cm-1. Partial least square (PLS) was used to build models for the five datasets. Six spectral preprocessing methods and their combinations were investigated to improve the prediction performance. Furthermore, the optimal preprocessing-PLS models were further optimized by uninformative variable elimination (UVE), Monte Carlo uninformative variable elimination (MCUVE) and randomization test (RT) variable selection methods. The optimal models acquire root mean square error of prediction (RMSEP) of 1.7299, 2.2089, 2.3742, 2.5608 and 2.6858 for binary, ternary, quaternary, quinary and hexanary blend oil datasets, respectively. The determination coefficients of prediction set (R2P) and residual predictive deviations (RPDs) for the five datasets are all above 0.93 and 3. Results show that the prediction accuracy is gradually decreased with the increasing of mixture order of blend oil. However, with proper spectral preprocessing and variable selection, the optimal models present good prediction accuracy even for the higher order blend oil. It demonstrates that NIR technology is feasible for determining the pure oil contents in binary to hexanary blend oil.


Assuntos
Óleo de Milho , Espectroscopia de Luz Próxima ao Infravermelho , Quimiometria , Análise dos Mínimos Quadrados , Óleo de Amendoim
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120138, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34304011

RESUMO

A novel ensemble extreme learning machine (ELM) approach that combines Monte Carlo (MC) sampling and least absolute shrinkage and selection operator (LASSO), named as MC-LASSO-ELM, is proposed to determine hemoglobin concentration of blood. It employs MC sampling to randomly select samples from the training set and LASSO further to choose variables from selected samples to establish plenty of ELM sub-models. The final prediction is obtained by combining the predictions of these sub-models. Combined with near-infrared spectroscopy, MC-LASSO-ELM is used to determine the hemoglobin concentration of blood. Compared with ELM, MC-ELM and LASSO-ELM, MC-LASSO-ELM can obtain the best stability and highest accuracy.


Assuntos
Algoritmos , Espectroscopia de Luz Próxima ao Infravermelho , Hemoglobinas , Método de Monte Carlo
12.
Anal Methods ; 13(11): 1374-1380, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33650616

RESUMO

Ensemble modeling has gained increasing attention for improving the performance of quantitative models in near infrared (NIR) spectral analysis. Based on Monte Carlo (MC) resampling, least absolute shrinkage and selection operator (LASSO) and partial least squares (PLS), a new ensemble strategy named MC-LASSO-PLS is proposed for NIR spectral multivariate calibration. In this method, the training subsets for building the sub-models are generated by sampling from both samples and variables to ensure the diversity of the models. In detail, a certain number of samples as sample subsets are randomly selected from training set. Then, LASSO is used to shrink the variables of the sample subset to form the training subset, which is used to build the PLS sub-model. This process is repeated N times and N sub-models are obtained. Finally, the predictions of these sub-models are used to produce the final prediction by simple average. The prediction ability of the proposed method was compared with those of LASSO-PLS, MC-PLS and PLS models on the NIR spectra of corn, blend oil and orange juice samples. The superiority of MC-LASSO-PLS in prediction ability is demonstrated.

13.
Food Chem ; 342: 128245, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33069537

RESUMO

Weighted multiscale support vector regression combined with ultraviolet-visible (UV-Vis) spectra for quantitative analysis of edible blend oil is proposed. In the approach, UV-Vis spectra of the training set are decomposed into a certain number of intrinsic mode functions (IMFs) and a residue by empirical mode decomposition (EMD) at first. Then support vector regression (SVR) sub-models are built on each IMF and residue. For prediction set, the spectra are decomposed as done on the training set and the final predictions are obtained by integrating SVR sub-model predictions by weighted average. The weight of the sub-model is the reciprocal of the fourth power of the root mean square error of cross-validation (RMSECV). For predicting peanut oil in binary blend oil and sesame oil in ternary blend oil, the proposed method has superiority in root mean square error of prediction (RMSEP) and correlation coefficient (R) compared with SVR and partial least squares (PLS).


Assuntos
Informática/métodos , Óleos de Plantas/química , Espectrofotometria Ultravioleta , Máquina de Vetores de Suporte , Análise de Dados , Análise dos Mínimos Quadrados , Fatores de Tempo
14.
Anal Methods ; 12(27): 3499-3507, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32672249

RESUMO

Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) combined with chemometrics was used for the first time to differentiate Angelicae Sinensis Radix (ASR) from four other similar herbs (either from the same genus or of similar appearance). A total of 191 samples, including 40 ASR, 39 Angelicae Pubescentis Radix (APR), 38 Chuanxiong Rhizoma (CR), 35 Atractylodis Macrocephalae Rhizoma (AMR) and 39 Angelicae Dahuricae Radix (ADR), were collected and divided into the training and prediction sets. Principal component analysis (PCA) was used for observing the sample cluster tendency of the calibration set. Different preprocessing methods were investigated and the optimal preprocessing combination was selected according to spectral signal characteristics and three-dimensional PCA (3D PCA) clustering results. The final discriminant model was built using extreme learning machine (ELM). The exploratory studies on the raw spectra and their 3D PCA scores indicate that the classification of the five herbs cannot be achieved by PCA of the raw spectra. Autoscaling, continuous wavelet transform (CWT) and Savitzky-Golay (SG) smoothing can improve the clustering results to different degrees. Furthermore, their combination in the order of CWT + autoscaling + SG smoothing can enhance the spectral resolution and obtain the best clustering result. These results are also validated using ELM models of raw and different preprocessing methods. By using CWT + autoscaling + SG smoothing + ELM, 100% classification accuracy can be achieved in both the calibration set and the prediction set. Therefore, the developed method could be used as a rapid, economic and effective method for discriminating the five herbs used in this study.


Assuntos
Medicamentos de Ervas Chinesas , Análise por Conglomerados , Análise de Componente Principal , Rizoma , Análise Espectral
15.
Phys Chem Chem Phys ; 22(23): 12967-12972, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490445

RESUMO

Tailoring the structures of nanomachines to achieve specific functions is one of the major challenges in chemistry. Disentangling the different movements of nanomachines is critical to characterize their functions. Here, the motions within one kind of molecular machine, a foldaxane, composed of a foldamer with a spring-like conformation on an axle have been examined at the molecular level. With the aid of molecular dynamics simulations and enhanced sampling methods, the free-energy landscape characterizing the shuttling of the foldaxane has been drawn. The calculated free-energy barrier, amounting to 20.7 kcal mol-1, is in good agreement with experiments. Further analysis reveals that the predominant contribution to the free-energy barrier stems from the disruption of the hydrogen bonds between the foldamer and the thread. In the absence of hydrogen bonding interactions between the terminals of the foldamer and the thread, shrinkage and swelling movements of the foldamer have been identified and investigated in detail. By deciphering the intricate mechanism of how the foldaxane shuttles, our understanding of motions within molecular machines is expected to be improved, which will, in turn, assist the construction of molecular machines with specific functions.

16.
RSC Adv ; 9(3): 1501-1508, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517993

RESUMO

Conformational inversion of foldamers has been shown to transmit signals across the lipid membrane. Helicity switching is critical to fulfilling this function. Despite the importance of the conformational inversion, the mechanism that underlies the helicity switching process remains unclear. In the present contribution, a rigid two-tiered stacked architecture (2T) has been investigated at the atomic level using molecular simulations. The architecture consists of two conjugated cores and three flexible side chains. Two- and three-dimensional free-energy landscapes characterizing the isomerization of 2T reveal a four-stage helicity switching process. Four stages involve the flipping of three peripheral aromatic rings in the top tier and rotating of the bottom tier relative to the top one. The highest barrier hampering the transition between right-handed and left-handed helices emerges as the second benzene ring flips. Structural analysis shows that the ring flipping stretches the side chain, which leads to the deformation of conjugated cores, twist of dihedral angles within side chains, and the reorientation of amine moieties attached to chains. By deciphering the intricate mechanism whereby the rigid stacked architecture isomerizes, our understanding of the helicity switching is expected to be improved, helping in turn the construction of novel functional helices.

17.
RSC Adv ; 9(9): 4832, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35532461

RESUMO

[This corrects the article DOI: 10.1039/C8RA09226E.].

18.
Artigo em Inglês | MEDLINE | ID: mdl-30077893

RESUMO

Traditional methods for identification of Panax notoginseng (PN) such as high performance liquid chromatography (HPLC) and gas chromatography (GC) are time-consuming, laborious and difficult to realize rapid and online analysis. In this research, the feasibility of identification and quantification of PN with rhizoma curcumae (RC), Curcuma longa (CL) and rhizoma alpiniae offcinarum (RAO) are investigated by using near infrared (NIR) spectroscopy combined with chemometrics. Five chemical pattern recognition methods including hierarchical cluster analysis (HCA), partial least squares-discriminant analysis (PLS-DA), artificial neural networks (ANN), support vector machine (SVM) and extreme learning machine (ELM) are used to build identification model of the dataset with 109 samples of PN and its three adulterants. Then seven datasets of binary, ternary and quaternary adulterations of PN are designed, respectively. Five multivariate calibration methods, i.e., principal component regression (PCR), support vector regression (SVR), partial least squares regression (PLSR), ANN and ELM are used to build quantitative model and compared for each dataset, separately. Finally, in order to further improve the prediction accuracy, SG smoothing, 1st derivative, 2nd derivative, continuous wavelet transform (CWT), standard normal variate (SNV), multiple scatter correction (MSC) and their combinations are investigated. Results show that PLS-DA and SVM can achieve 100% classification accuracy for identification of 109 PN with its three adulterants. PLSR is an optimal calibration method by comprehensive consideration of prediction accuracy, over-fitting and efficiency for the quantitative analysis of seven adulterated datasets. Furthermore, the predictive ability of the PLSR model for PN contents can be improved obvious by pretreating the spectra by the optimal preprocessing method, with correlation coefficients of which all higher than 0.99.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Panax notoginseng/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Contaminação de Medicamentos , Análise dos Mínimos Quadrados
19.
Phys Chem Chem Phys ; 20(45): 28881-28885, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30420990

RESUMO

Understanding the switching mechanism of helical molecular cages is critical in regulating their functions of asymmetric catalysis and enantioseparation. The helical inversion of a three-tiered stacked architecture was investigated by employing molecular dynamics simulations combined with free-energy calculations. A two-dimensional free-energy landscape characterizing the spinning processes of the top and bottom tiers around the z axis was determined using the extended adaptive biasing force method. The free-energy barrier in the least free-energy pathway was estimated to be 17.6 kcal mol-1, in excellent agreement with experimental measurements. Further analysis revealed that the barrier was caused by geometric deformation, weakening of π-π stacking between aromatic rings, and the re-orientation of polarized amine moieties. The present contribution takes a step toward understanding the dynamic helicity-based functions related to asymmetric reactions and optical resolution.

20.
Anal Chim Acta ; 1009: 20-26, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29422128

RESUMO

Neural networks with random weights (NNRW) has been used for regression due to its excellent performance. However, NNRW is sensitive to outliers and unstable to some extent in dealing with the real-world complex samples. To overcome these drawbacks, a new method called robust boosting NNRW (RBNNRW) is proposed by integrating a robust version of boosting with NNRW. The method builds a large number of NNRW sub-models sequentially by robustly reweighted sampling from the original training set and then aggregates these predictions by weighted median. The performance of RBNNRW is tested with three spectral datasets of wheat, light gas oil and diesel fuel samples. As comparisons to RBNNRW, the conventional PLS, NNRW and boosting NNRW (BNNRW) have also been investigated. The results demonstrate that the introduction of robust boosting greatly enhances the stability and accuracy of NNRW. Moreover, RBNNRW is superior to BNNRW particularly when outliers exist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA