Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Talanta ; 279: 126611, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39067202

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 µg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 µM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.

2.
Talanta ; 278: 126492, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955099

RESUMO

Dysregulation of peptidyl arginine deiminase 4 (PAD4) is involved in a variety of diseases including rheumatoid arthritis (RA) and Alzheimer's disease (AD), and it has emerged as potential and promising therapeutic target. However, no PAD4 inhibitor is ready for clinical use. Immobilized enzyme screening technology has gained increasing attention due to its low cost, reusability, easy separation from the reaction mixture, and resistance to changes in environmental conditions. In this study, PAD4 was immobilized on the magnetic nanoparticles (MNP) to prolong its activity stability, and a simple and rapid screening strategy of traditional Chinese medicine inhibitors based on immobilized PAD4 was established. The PAD4 enzyme was immobilized on magnetic nanoparticles (MNP) via Schiff base reaction using glutaraldehyde (GA) as crosslinking agent. Compared with free PAD4, the resulting MNP@GA@PAD4 exhibited an enhanced tolerance to temperature and storage stability, and its reusability was greatly improved with 66 % of initial enzyme activity after being recycled 10 times. The inhibitory activity of the immobilized PAD4 was assessed using two known PAD4 inhibitors GSK484 and BB-Cl-amidine. The semi-maximum inhibitory concentrations (IC50) of GSK484 and BB-Cl-amidine for MNP@GA@PAD4 were 1.00 and 0.97 µM, respectively, for free PAD4 were 0.64 and 0.85 µM, respectively. Finally, the MNP@GA@PAD4 was employed to rapid screen of natural PAD4 inhibitors from forty traditional Chinese medicines (TCMs). Under the same conditions, the controlled experiment was conducted with free PAD4. The screening results of TCMs inhibitors on MNP@GA@PAD4 and free PAD4 were similar, the alcohol extracts of Cinnamomi Cortex and Caryophylli Flos had significant inhibitory effects on PAD4 enzyme activity. The IC50 values of Cinnamomi Cortex extract for MNP@GA@PAD4 and free PAD4 were determined as 27 and 48 µg/mL, respectively. The IC50 values of Caryophylli Flos extracts for MNP@GA@PAD4 and free PAD4 were determined as 48 and 32 µg/mL, respectively. For the first time, this study proposed a method to immobilize PAD4 on magnetic materials, and developed a rapid, reusable and feasible strategy to screening natural PAD4 inhibitors from TCMs.

3.
Clin Exp Immunol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028614

RESUMO

Severe trauma can lead to numerous serious complications, threating the well-being and vitality of the afflicted. The quantity and functionality of PMNs undergo rapid transformations in response to severe trauma, playing a pivotal role in the trauma response. The absence of CCAAT/enhancer-binding protein ε (C/EBPε) profoundly impairs the functionality of polymorphonuclear neutrophils (PMNs), a function of paramount importance in trauma. In this study, by generating mice with C/EBPε knocked out or overexpressed, we substantiate that C/EBPε ensures the restoration of PMN function, enhancing the expression of antimicrobial proteins and thereby promoting trauma recovery. Furthermore, diminished expression of C/EBPε is observed in trauma patients, with levels displaying a negative correlation with ISS and APACHE II scores, suggesting its potential as a prognostic indicator for clinical treatment. Mechanistically, we uncover the upregulation of SIRT1 and the inhibition of P300 participating in the suppression of C/EBPε acetylation, consequently reducing the resilience of mice to trauma. As therapeutic interventions, whether through the sole administration of PMN, NAM treatment, or their combination, all result in an increased survival rate in traumatic mice. In conclusion, our study elucidates the role of C/EBPε in enhancing the resilience to trauma and identifies C/EBPε acetylation as a critical regulatory mechanism, offering potential therapeutic approaches involving PMN transfusion and NAM treatment.

4.
Anal Chim Acta ; 1317: 342900, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030004

RESUMO

BACKGROUND: The fabrication technique of capillary column is the key to the development and application of capillary liquid chromatography (cLC) to improve separation efficiency for analytes. The capillary monolithic column possessed three-dimensionally connected porous or channel structures. Unique porous structure endows excellent permeability and high performance in diverse fields, especially in separation. Thereinto, organic monolithic columns have attracted widespread attention due to their advantages of simple preparation and excellent biocompatibility. However, their separation selectivity needs to be further developed and regulated to apply the separation of more diverse samples. RESULTS: A novel polymeric monolithic column was prepared via thermally initiated in situ copolymerization of 2-methyladamantan-2-yl acrylate (MADA) with ditrimethylolpropane tetraacrylate (DTTA) in fused silica. The prepared poly(MADA-co-DTTA) monolith showed adjustable permeability, developed porous structure and high thermal stability. Consequently, it exhibited excellent separation capability of small molecules (alkylbenzenes and polycyclic aromatic hydrocarbons). Especially, when acetonitrile/water (60/40, v/v) was used as the mobile phase, the theoretical plate numbers reached 84,000 plates m-1 for butylbenzene at a linear velocity of 0.5 mm s-1. Most importantly, the hydrophobicity of the poly(MADA-co-DTTA) monolithic column was regulated via host-guest interaction between adamantyl group and cucurbit [7]uril (CB[7]). Additionally, the poly(MADA-co-DTTA) monolith was further adopted for the analysis of the tryptic digest of proteins from HeLa by cLC-MS/MS. The 33,783 unique peptides and 5,299 proteins were identified on the monolith, which exhibited great separation ability for complex samples. SIGNIFICANCE AND NOVELTY: Due to abundant pore structure and good chemical properties, the poly(MADA-co-DTTA) monolithic column exhibited high performance for the separations of small molecules and biological sample. Meanwhile, owing to the existence of adamantyl-group, CB[7] was immobilized on the poly(MADA-co-DTTA) monolithic column to fabricate poly(MADA-co-DTTA)-CB[7] by host-guest interaction. It is possible to adjust the surface chemistry of the monolithic materials to accommodate more complex analytes.

5.
J Chromatogr A ; 1731: 465204, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39059302

RESUMO

Hierarchically porous monoliths with satisfactory properties have been employed in diverse fields, especially separation. In this study, pentafluorophenyl acrylate (PFPA), pentaerythritol tetraacrylate (PETA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) were selected as precursors to fabricate a novel monolithic column by thermally initiated polymerization in the presence of a binary porogenic system containing tetrahydrofuran and 1-propanol. The fabricated poly(PFPA-co-PETA-co-TTMP) monolithic column revealed excellent permeability and mechanical stability. Additionally, baseline separation of the mixture of small molecules can be achieved, involving alkylbenzene and fluorobenzene in chromatographic assessment, and the theoretical plate number is up to 60,500 plates/m for butylbenzene with a linear velocity of 0.14 mm/s. Tryptic digest of HeLa as an analyte was used to investigate the possibility of the poly(PFPA-co-PETA-co-TTMP) monolith in biological separation by cLC-MS/MS. Moreover, benefiting from the existence of pentafluorophenyl groups, the cucurbit[8]uril (CB[8]) could be modified on the prepared poly(PFPA-co-PETA-co-TTMP) monolith through host-guest interaction to obtain poly(PFPA-co-PETA-co-TTMP)-CB[8] monolith. It could be observed that significant changes in retention behavior of analytes appeared after immobilizing CB[8] on the monolith. It offered an innovative approach by utilizing host-guest interaction to fabricate monolithic columns with different chromatographic behaviors.

6.
Pharmacol Res ; 206: 107288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977208

RESUMO

Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.


Assuntos
Abietanos , Antineoplásicos Fitogênicos , Neoplasias , Transdução de Sinais , Humanos , Abietanos/uso terapêutico , Abietanos/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia
7.
Se Pu ; 42(7): 711-720, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966979

RESUMO

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Assuntos
Citrulinação , Peptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/química
8.
Fitoterapia ; 177: 106095, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942299

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 µM to 667 µM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 µM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.

9.
Int J Biol Macromol ; 259(Pt 1): 129175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181916

RESUMO

Armillaria mellea (Vahl) P. Kumm. is a well-known homoeopathic plant with medicinal and culinary uses. Modern phytochemical researchers have successfully extracted and purified over 40 types of A. mellea polysaccharides (AMPs) from the fruiting bodies, hyphae and fermentation broth of A. mellea, and some of them have been analyzed and identified by their chemical structures. The impressive biological activity of these polysaccharides has been recognized by scientists worldwide. Many studies show that AMPs have remarkable antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, immunoregulatory, hypolipidemic, thrombectomy, anti-aging, pulmonary protective, hepatic protective, anti-Alzheimer's properties, etc. However, the current understanding of the relationships between their chemical structure and biological activity, toxicological effects and pharmacokinetics remains limited. This article provides a systematic review of the research conducted over the past decades on the extraction and purification methods, structural characteristics, biological activity and mechanism of action of AMPs. The aim is to provide a research base that will benefit the future application of AMPs as therapeutic drugs and functional foods, and also provide insights for the further development of AMPs.

10.
J Chromatogr A ; 1716: 464643, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38232639

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is an important biocatalytic enzymes involved in the conversion of protein arginine to citrulline, its dysregulation has a great impact on many physiological processes. Recently, PAD4 has emerged as a potential therapeutic target for the treatment of various diseases including rheumatoid arthritis (RA). Traditional Chinese Medicines (TCMs), also known as herbal plants, have gained great attention by the scientific community due to their good therapeutic performance and far fewer side effects observed in the clinical treatment. However, limited researches have been reported to screen natural PAD4 inhibitors from herbal plants. The color developing reagent (COLDER) or fluorescence based methods have been widely used in PAD4 activity assay and inhibitor screening. However, both methods measure the overall absorbance or fluorescence in the reaction solution, which are easy to be affected by the background interference due to colorful extracts from herbal plants. In this study, a simple, and robust high-performance liquid chromatography ultraviolet-visible (HPLC-UV) based method was developed to determine PAD4 activity. The proposed strategy was established based on COLDER principle, while used hydrophilic l-arginine instead of hydrophobic N-benzoyl-l-arginine ethyl ester (BAEE) as a new substrate to determine PAD4 inhibition activity of herbal extracts. The herbal extracts and PAD4 generated hydrophobic l-citrulline were successfully separated by the HPLC, and the developed method was optimized and validated with a known PAD4 inhibitor (GSK484) in comparison with COLDER assay. The IC50 value of GSK484 measured by HPLC-UV method was 153 nM, and the detection limit of the citrulline was 0.5 nmol, respectively, with a linear range of 0.5 nmol to 20 nmol. The IC50 value of the HPLC-UV method was improved by nearly three times compared with COLDER assay (527 nM), and the results indicated the reliability of PAD4 inhibition via HPLC-UV method. The inhibitory effect against PAD4 were fast and accurately screened for the twenty-four extracts from eight herbs. Among them, Ephedra Herba extracts showed significant inhibitory activity against the PAD4 with the IC50 values of three extracts (ethanol, ethyl acetate and water) ranging from 29.11 µg/mL to 41.36 µg/mL, which may help researchers to discover novel natural compounds holding high PAD4 inhibition activity.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Inibidores Enzimáticos , Proteína-Arginina Desiminase do Tipo 4 , Cromatografia Líquida de Alta Pressão , Citrulina , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Reprodutibilidade dos Testes , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/química
11.
Adv Sci (Weinh) ; 11(9): e2306955, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084450

RESUMO

The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.


Assuntos
Neoplasias Gástricas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Neoplasias Gástricas/diagnóstico , Glicosilação , Biomarcadores , Polissacarídeos/química
12.
Nanoscale ; 15(46): 18920-18927, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37975758

RESUMO

Understanding the influence of the inner shell on fluorescence blinking and exciton dynamics is essential to promote the optical performances of InP-based quantum dots (QDs). Here, the fluorescence blinking, exciton dynamics, second-order correlation function g2(τ), and ultrafast carrier dynamics of InP/ZnSe/ZnS QDs regulated by the inner ZnSe shell thickness varying from 2 to 7 monolayers (MLs) were systematically investigated. With an inner ZnSe shell thickness of 5 MLs, the photoluminescence quantum yield (PL QY) can reach 98% due to the suppressed blinking and increased probability of multiphoton emission. The exciton dynamics of InP/ZnSe/ZnS QDs with different inner shells indicates that two decay components of neural excitons and charged trions are competitive to affect the photon emission behavior. The probability density distributions of the ON and OFF state duration in the blinking traces demonstrate an effective manipulation of the inner ZnSe shell in the non-radiative processes via defect passivation. Accordingly, the radiative recombination dominates the exciton deactivation and the non-radiative Auger recombination rate is remarkably reduced, leading to a QY close to unity and a high PL stability for InP/ZnSe/ZnS QDs with 5 MLs of the ZnSe shell. These results provide insights into the photophysical mechanism of InP-based QDs and are significant for developing novel semiconductor PL core/shell QDs.

13.
Foods ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002173

RESUMO

Because of the health benefits and economic opportunities, extracting bioactive peptides from plant proteins, often food processing by-products, garners significant interest. However, the high enzyme costs and the emergence of bitter peptides have posed significant challenges in production. This study achieved the immobilization of Alcalase and Flavorzyme using cost-effective SiO2 microparticles. Mussel-inspired chemistry and biocompatible polymers were employed, with genipin replacing glutaraldehyde for safer crosslinking. This approach yielded an enzyme loading capacity of approximately 25 mg/g support, with specific activity levels reaching around 180 U/mg for immobilized Alcalase (IA) and 35 U/mg for immobilized Flavorzyme (IF). These immobilized proteases exhibited improved activity and stability across a broader pH and temperature range. During the hydrolysis of soy proteins, the use of immobilized proteases avoided the thermal inactivation step, resulting in fewer peptide aggregates. Moreover, this study applied peptidomics and bioinformatics to profile peptides in each hydrolysate and identify bioactive ones. Cascade hydrolysis with IA and IF reduced the presence of bitter peptides by approximately 20%. Additionally, 50% of the identified peptides were predicted to have bioactive properties after in silico digestion simulation. This work offers a cost-effective way of generating bioactive peptides from soy proteins with reducing potential bitterness.

14.
ACS Appl Mater Interfaces ; 15(42): 49095-49106, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820001

RESUMO

Highly selective capture of cesium (Cs+) from complex aqueous solutions has become increasingly important owing to its (133Cs) indispensable role in some cutting-edge technologies and the environmental mobility of radioactive nuclide (137Cs) from nuclear wastewater. Herein, we report the development of cation-intercalated lamellar MoS2 as an effective Cs+ adsorbent with the advantages of facile synthesis and highly tunable layer spacing. Two types of cations, including Na+ and NH4+, were employed for the intercalations between adjacent layers of MoS2. The results demonstrated that the adsorption capacity of the NH4+-intercalated material (M-NH4+, 134 mg/g) for Cs+ clearly outperformed the others due to higher loading percentages of cations and larger layer spacing. The cesium partition coefficients for M-NH4+ in the presence of 100-fold competing ions all exceed 1 × 103 mL/g. A simulated complex aqueous solution containing 15.37 mg/L Cs+ and highly excess of competing ions Li+, Na+, K+, Mg2+, and Ca2+ (20-306 times higher) was introduced to prove the practical application potential using our best-performing M-NH4+, showing a good to excellent partition ability of Cs+ among other cations, especially for Cs/K and Cs/Na with separation factors of 58 and 212, respectively. The adsorption and selectivity mechanisms were clearly elucidated using various advanced techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These results revealed that the good selectivity for Cs+ can be ascribed to the differences in Lewis acidities, hydration energy, cation sizes, and in particular, the divergence of coordination modes which was successfully achieved after tuning the layer distance via the cation intercalation strategy. In addition, the material has fast kinetics (<30 min), wide range of pH tolerance (4-10), and good reusability. Overall, our studies point out that the tunable lamellar MoS2-based materials are promising adsorbents for Cs+ capture and separation.

15.
Exp Ther Med ; 26(3): 412, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37559934

RESUMO

Osteoporosis is a common disease characterized by reduced bone mass, microstructural deterioration, fragility and consequent fragility fractures and is particularly prevalent among the elderly population. Although glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have positive effects on bones, their role in the prevention of osteoporotic fractures remains to be elucidated. The present study assigned female Sprague Dawley rats with osteoporotic fractures into variectomized osteoporosis (OVX), OVX + liraglutide (LIRA) (50 µg/kg/day subcutaneous LIRA) and control groups. At 3 and 6 weeks postoperatively, X-ray, tartrate-resistant acid phosphatase (TRAP) staining, histological and biomechanical assays and assessment of femoral bone mineral density (BMD) were performed. Compared with the OVX group, GLP-1 RA treatment improved the formation of calluses and osseous union. TRAP staining showed significantly fewer osteoclasts in the OVX + LIRA group compared with the OVX group. In the osteoporotically fractured rats, LIRA improved bone strength at the femoral diaphysis, stiffness, ultimate load and femoral trabecular BMD Compared with the OVX group. GLP-1 RA treatment inhibited osteoclast formation and improved trabecular bone architecture and mass in osteoporotic fracture model rats, leading to improved biomechanical strength. GLP-1 RAs may be used as novel anti-osteoporotic fracture agents.

16.
J Agric Food Chem ; 71(14): 5686-5699, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37012896

RESUMO

This study sought to understand how the features of proteins impact the properties of nanoparticles assembled using the pH-shifting approach and the mechanism behind. Four legume protein isolates from faba bean, mung bean, soy, and pea were fractionated into natural aqueous-soluble (Sup) and aqueous-insoluble (Sed) fractions, which were proved to serve as shell and core, respectively, for the pH-driven-assembled nanoparticles. Using zein instead of Sed fractions as the core improved size uniformity, and particle size can be precisely controlled by adjusting core/shell ratios. Using the proteomic technique and silico characterization, the features of identified proteins indicated that hydrophobicity rather than molecular weight, surface charge, etc., mainly determined particle size. With molecular docking, structural analysis, and dissociation tests, the assembly of zein/Sup-based nanoparticles was dominantly driven by hydrophobic interactions. This study provides constructive information on the correlation between protein features and the properties of pH-driven-assembled nanoparticles, achieving a precise control of particle size.


Assuntos
Nanopartículas , Zeína , Tamanho da Partícula , Zeína/química , Simulação de Acoplamento Molecular , Proteômica , Proteínas/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
17.
Mol Plant ; 16(3): 599-615, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36733253

RESUMO

Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.


Assuntos
Proteogenômica , Pyrus , Pyrus/genética , Pyrus/metabolismo , Frutas/metabolismo , Fenótipo , Proteômica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Int J Biol Sci ; 18(16): 6114-6128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439884

RESUMO

Rationale: Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment (TME) and facilitate lung cancer progression. Studies have reported that metabolic reprogramming can regulate the function of CAFs, especially abnormal lipid metabolism. Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids and have a crucial role in lipid metabolism. However, little is known about the synthesis and functions of LDs in lung CAFs. Methods: TetO-EGFRL858R; CCSP-rtTA transgenic mouse model was used to establish a spontaneous pulmonary tumor model and investigate the accumulation of LDs in CAFs. The effect of LDs accumulation on the phenotype change of fibroblasts was estimated in vitro using mouse fibroblast cell lines. RNA sequencing, Western blotting, RT-PCR, and DNA-pull down were performed to determine the mechanism of LDs synthesis in fibroblasts. Results: We found that LDs were enriched in lung CAFs and induced the pro-tumoral phenotype of CAFs with increased expression of α-smooth muscle actin (α-SMA) and Collagen alpha-2 (I) chain (COL1A2). As the main regulator, hypoxia-inducible factor-1α (HIF-1α) was highly expressed in activated fibroblasts and increased the content of LDs. RNA-sequencing results showed that Stearoyl-CoA Desaturase1 (SCD1) was a downstream gene of HIF-1α, which upregulated the number of LDs in fibroblasts. Importantly, SCD1 inhibition reduced the growth of lung tumors, which was correlated with LDs decrease in CAFs. Analysis of human lung adenocarcinoma tissue chip revealed that CAFs with a high level of SCD1 were positively correlated with the expression of HIF-1α and poor survival in lung cancer patients. Conclusions: The HIF-1α/SCD1 axis regulates the accumulation of LDs in CAFs, which might represent a novel target for lung cancer therapy.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Fibroblastos Associados a Câncer/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Microambiente Tumoral
19.
Expert Rev Proteomics ; 19(3): 153-164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36221222

RESUMO

INTRODUCTION: Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. AREAS COVERED: This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. EXPERT OPINION: Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.


Assuntos
Proteoma , Proteômica , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes
20.
J Proteome Res ; 21(10): 2472-2480, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36040778

RESUMO

Capillary- and micro-flow liquid chromatography-tandem mass spectrometry (capLC-MS/MS and µLC-MS/MS) is becoming a valuable alternative to nano-flow LC-MS/MS due to its high robustness and throughput. The systematic comparison of capLC-MS/MS and µLC-MS/MS systems for global proteome profiling has not been reported yet. Here, the capLC-MS/MS (150 µm i.d. column, 1 µL/min) and µLC-MS/MS (1 mm i.d. column, 50 µL/min) systems were both established based on UltiMate 3000 RSLCnano coupled to an Orbitrap Exploris 240 by integrating with different flowmeters. We evaluated both systems in terms of sensitivity, analysis throughput, separation efficiency, and robustness. capLC-MS/MS was about 10 times more sensitive than µLC-MS/MS at different gradient lengths. Compared with capLC-MS/MS, µLC-MS/MS was able to achieve higher analysis throughput and separation efficiency. During the 7 days' long-term performance test, both systems showed good reproducibility of chromatographic full width (RSD < 3%), retention time (RSD < 0.4%), and protein identification (RSD < 3%). These results demonstrate that capLC-MS/MS is more suitable for high-throughput analysis of clinical samples with a limited starting material. When enough samples are available, µLC-MS/MS is preferred. Together, capLC and µLC coupled to Orbitrap Exploris 240 with moderate sensitivity should well meet the needs of large-cohort clinical proteomic analysis.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Humanos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA