Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sep Purif Technol ; 298: 121565, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35765307

RESUMO

Public health safety issues have been plaguing the world since the pandemic outbreak of coronavirus disease (COVID-19). However, most personal protective equipments (PPE) do not have antibacterial and anti- toxicity effects. In this work, we designed and prepared a reusable, antibacterial and anti-toxicity Polyacrylonitrile (PAN) based nanofibrous membrane cooperated with Ag/g-C3N4 (Ag-CN), Myoporum.bontioides (M. bontioides) plant extracts and Ag nanoparticles (NPs) by an electrospinning-process. The SEM and TEM characterization revealed the formation of raised, creased or wrinkled areas on the fiber surface caused by the Ag nanoparticles, the rough surface prevented the aerosol particles on the fiber surface from sliding and stagnating, thus providing excellent filtration performance. The PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane could be employed as a photocatalytic bactericidal material, which not only degraded 96.37% of methylene blue within 150 min, but also exhibited the superior bactericidal effect of 98.65 ± 1.49% and 97.8 ± 1.27% against E. coli and S. aureus, respectively, under 3 hs of light exposure. After 3 cycles of sterilization experiments, the PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane maintained an efficient sterilization effect. Molecular docking revealed that the compounds in M. bontioides extracts interacted with neo-coronavirus targets mainly on Mpro and RdRp proteins, and these compounds had the strongest docking energy with Mpro protein, the shortest docking radius, and more binding sites for key amino acids around the viral protein targets, which influenced the replication and transcription process of neo-coronavirus. The PAN/M.bontioides/Ag-CN/Ag nanofibrous membrane also performed significant inhibition of influenza A virus H3N2. The novel nanofiber membrane is expected to be applied to medical masks, which will improve human isolation and protection against viruses.

2.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616572

RESUMO

In this work, a functionalized polycaprolactone (PCL) composite fiber combining calf-type I collagen (CO) and natural drug usnic acid (UA) was prepared, in which UA was used as an antibacterial agent. Through 3D near-field electrospinning, the mixed solution was prepared into PCL/CO/UA composite fibers (PCUCF), which has a well-defined perfect arrangement structure. The influence of electrospinning process parameters on fiber diameter was investigated, the optimal electrospinning parameters were determined, and the electric field simulation was conducted to verify the optimal parameters. The addition of 20% collagen made the composite fiber have good hydrophilicity and water absorption property. In the presence of PCUCF, 1% UA content significantly inhibited the growth rate of Gram-positive and negative bacteria in the plate culture. The AC-PCUCF (after crosslinking PCUCF) prepared by crosslinking collagen with genipin showed stronger mechanical properties, water absorption property, thermal stability, and drug release performance. Cell proliferation experiments showed that PCUCF and AC-PCUCF had no cytotoxicity and could promote cell proliferation and adhesion. The results show that PCL/CO/UA composite fiber has potential application prospects in biomedical dressing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA