Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(5): e0249921, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044833

RESUMO

The discovery of new and efficient genetic engineering technologies for Agrobacterium will broaden the capacity for fundamental research on this genus and its utilization as a transgenic vehicle. In this study, we aim to develop an efficient recombineering system for Agrobacterium species. We examined isolates of Agrobacterium and the closely related genus Rhizobium to identify pairs of ET-like recombinases that would aid in the recombineering of Agrobacterium species. Four pairs of ET-like recombinases, named RecETh1h2h3h4AGROB6, RecETh1h2P3RHI597, RecETRHI145, and RecEThRHI483, were identified in Agrobacterium tumefaciens strain B6, Rhizobium leguminosarum bv. trifolii WSM597, Rhizobium sp. strain LC145, and Rhizobium sp. strain Root483D2, respectively. Eight more candidate recombineering systems were generated by combining the new ET-like recombinases with Redγ or Pluγ. The PluγETRHI145 system, the RecETh1h2h3h4AGROB6 system, and the PluγEThRHI483 system were determined to be the most efficient recombineering systems for the type strains A. tumefaciens C58, A. tumefaciens EHA105, and Rhizobium rhizogenes NBRC 13257, respectively. The utility of these systems was demonstrated by knocking out the istB-istA fusion gene in C58, the celI gene in EHA105, and the 3'-to-5' exonuclease gene and endoglucanase gene in NBRC 13257. Our work provides an effective genetic manipulation strategy for Agrobacterium species. IMPORTANCEAgrobacterium is a powerful transgenic vehicle for the genetic manipulation of numerous plant and fungal species and even animal cells. In addition to improving the utility of Agrobacterium as a transgenic vehicle, genetic engineering tools are important for revealing crucial components that are functionally involved in transfer DNA (T-DNA) translocation events. This work developed an efficient and versatile recombineering system for Agrobacterium. The successful genome modification of Agrobacterium strains revealed that this new recombineering system could be used for the genetic engineering of Agrobacterium.


Assuntos
Rhizobium leguminosarum , Rhizobium , Agrobacterium tumefaciens/genética , Engenharia Genética , Recombinases , Rhizobium/genética
2.
J Sci Food Agric ; 102(7): 3038-3046, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34778957

RESUMO

BACKGROUND: Excessive nitrogen (N) fertilization in glasshouse fields greatly increases N loss and fossil-fuel energy consumption resulting in serious environmental risks. Microbial inoculants are strongly emerging as potential alternatives to agrochemicals and offer an eco-friendly fertilization strategy to reduce our dependence on synthetic chemical fertilizers. Effects of a N-fixing strain Pseudomonas protegens CHA0-ΔretS-nif on ginger plant growth, yield, and nutrient uptake, and on earthworm biomass and the microbial community were investigated in glasshouse fields in Shandong Province, northern China. RESULTS: Application of CHA0-ΔretS-nif could promote ginger plant development, and significantly increased rhizome yields, by 12.93% and 7.09%, respectively, when compared to uninoculated plants and plants treated with the wild-type bacterial strain. Inoculation of CHA0-ΔretS-nif had little impact on plant phosphorus (P) acquisition, whereas it was associated with enhanced N and potassium (K) acquisition by ginger plants. Moreover, inoculation of CHA0-ΔretS-nif had positive effects on the bacteria population size and the number of earthworms in the rhizosphere. Similar enhanced performances were also found in CHA0-ΔretS-nif-inoculated ginger plants even when the N-fertilizer application rate was reduced by 15%. A chemical N input of 573.8 kg ha-1 with a ginger rhizome yield of 1.31 × 105 kg ha-1 was feasible. CONCLUSIONS: The combined application of CHA0-ΔretS-nif and a reduced level of N-fertilizers can be employed in glasshouse ginger production for the purpose of achieving high yields while at the same time reducing the inorganic-N pollution from traditional farming practices. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Nitrogênio , Zingiber officinale , Bactérias , Fertilizantes , Plantas , Pseudomonas , Solo
3.
Crit Rev Microbiol ; 45(2): 162-181, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31218924

RESUMO

Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the ß-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiales/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Burkholderiales/genética , Policetídeo Sintases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA