Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22130, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333585

RESUMO

Two-dimensional transition metal dichalcogenides, particularly MoS2, are interesting materials for many applications in aerospace research, radiation therapy and bioscience more in general. Since in many of these applications MoS2-based nanomaterials can be placed in an aqueous environment while exposed to ionizing radiation, both experimental and theoretical studies of their behaviour under these conditions is particularly interesting. Here, we study the effects of tiny imparted doses of 511 keV photons to MoS2 nanoflakes in water solution. To the best of our knowledge, this is the first study in which ionizing radiation on 2D-MoS2 occurs in water. Interestingly, we find that, in addition to the direct interaction between high-energy photons and nanoflakes, reactive chemical species, generated by γ-photons induced radiolysis of water, come into play a relevant role. A radiation transport Monte Carlo simulation allowed determining the elements driving the morphological and spectroscopical changes of 2D-MoS2, experimentally monitored by SEM microscopy, DLS, Raman and UV-vis spectroscopy, AFM, and X-ray photoelectron techniques. Our study demonstrates that radiolysis products affect the Molybdenum oxidation state, which is massively changed from the stable + 4 and + 6 states into the rarer and more unstable + 5. These findings will be relevant for radiation-based therapies and diagnostics in patients that are assuming drugs or contrast agents containing 2D-MoS2 and for aerospace biomedical applications of 2DMs investigating their actions into living organisms on space station or satellites.

3.
Life (Basel) ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983945

RESUMO

Space missions with humans expose the crews to ionizing radiation, mainly due to the galactic cosmic radiation (GCR). All radiation protection programs in space aim to minimize crews' exposure to radiation. The radiation protection of astronauts can be achieved through the use of shields. The shields could serve as a suit to reduce GCR exposure and, in an emergency, as a radiation shelter to perform necessary interventions outside the space habitat in case of a solar proton event (SPE). A space radiation shielding that is suitable for exploration during space missions requires particular features and a proper knowledge of the radiation type. This study shows the results of numerical simulations performed with the Geant4 toolkit-based code DOSE. Calculations to evaluate the performance of Nomex, an aramidic fiber with high mechanical resistance, in terms of dose reduction to crews, were performed considering the interaction between protons with an energy spectrum ranging from 50 to 1100 MeV and a target slab of 20 g/cm2. This paper shows the properties of secondary products obtained as a result of the interaction between space radiation and a Nomex target and the properties of the secondary particles that come out the shield. The results of this study show that Nomex can be considered a good shield candidate material in terms of dose reductions. We also note that the secondary particles that provide the greatest contribution to the dose are protons, neutrons and, in a very small percentage, α-particles and Li ions.

4.
Life (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36143340

RESUMO

Individualized dosimetry in nuclear medicine is currently at least advisable in order to obtain the best risk-benefit balance in terms of the maximal dose to lesions and under-threshold doses to radiosensitive organs. This article aims to propose a procedure for fast dosimetric calculations based on planar whole-body scintigraphy (WBS) images and developed to be employed in everyday clinical practice. METHODS: For simplicity and legacy reasons, the method is based on planar imaging dosimetry, complemented with some assumptions on the radiopharmaceutical kinetics empirically derived from single-photon emission tomography/computed tomography (SPECT/CT) image analysis. The idea is to exploit a rough estimate of the time-integrated activity as has been suggested for SPECT/CT dosimetry but using planar images. The resulting further reduction in dose estimation accuracy is moderated by the use of a high-precision Monte-Carlo S-factor, such as those available within the OpenDose project. RESULTS: We moved the problem of individualized dosimetry to a transformed space where comparing doses was imparted to the ICRP Average Male/Female computational phantom, resulting from an activity distribution related to patient's pharmaceutical uptake. This is a fast method for the personalized dosimetric evaluation of radionuclide therapy, bearing in mind that the resulting doses are meaningful in comparison with thresholds calculated in the same framework. CONCLUSION: The simplified scheme proposed here can help the community, or even the single physician, establish a quantitative guide-for-the-eye approach to individualized dosimetry.

5.
Diagnostics (Basel) ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34679438

RESUMO

Background: Radioactive 131I (RAI) therapy is used in patients with differentiated thyroid cancer (DTC) after total thyroidectomy for remnant ablation, adjuvant treatment or treatment of persistent disease. 131I retention data, which are used to indicate the time at which a 131I treated DTC patient can be released from the hospital, may bring some insights regarding clinical factors that prolong the length of hospitalization. The aim of this study was to investigate the 131I whole-body retention in DTC patients during 131I therapy. Methods: We monitored 166 DTC patients to follow the 131I whole-body retention during 131I therapy with a radioactivity detector fixed on the ceiling of each protected room. A linear regression fit permitted us to estimate the whole-body 131I effective half-life in each patient, and a relationship was sought between patients' clinical characteristics and whole-body effective 131I half-life. Results: The effective 131I half-life ranged from 4.08 to 56.4 h. At multivariable analysis, longer effective 131I half-life was related to older age and extensive extra-thyroid disease. Conclusions: 131I effective half-life during 131I treatment in DTC patients is highly variable among patients and is significantly longer in older and in patients with RAI uptake in large thyroid remnants or in extrathyroidal disease that significantly prolongs the whole-body retention of 131I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA