Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335112

RESUMO

Functional site-directed fluorometry has been the technique of choice to investigate the structure-function relationship of numerous membrane proteins, including voltage-gated ion channels. This approach has been used primarily in heterologous expression systems to simultaneously measure membrane currents, the electrical manifestation of the channels' activity, and fluorescence measurements, reporting local domain rearrangements. Functional site-directed fluorometry combines electrophysiology, molecular biology, chemistry, and fluorescence into a single wide-ranging technique that permits the study of real-time structural rearrangements and function through fluorescence and electrophysiology, respectively. Typically, this approach requires an engineered voltage-gated membrane channel that contains a cysteine that can be tested by a thiol-reactive fluorescent dye. Until recently, the thiol-reactive chemistry used for the site-directed fluorescent labeling of proteins was carried out exclusively in Xenopus oocytes and cell lines, restricting the scope of the approach to primary non-excitable cells. This report describes the applicability of functional site-directed fluorometry in adult skeletal muscle cells to study the early steps of excitation-contraction coupling, the process by which muscle fiber electrical depolarization is linked to the activation of muscle contraction. The present protocol describes the methodologies to design and transfect cysteine-engineered voltage-gated Ca2+ channels (CaV1.1) into muscle fibers of the flexor digitorum brevis of adult mice using in vivo electroporation and the subsequent steps required for functional site-directed fluorometry measurements. This approach can be adapted to study other ion channels and proteins. The use of functional site-directed fluorometry of mammalian muscle is particularly relevant to studying basic mechanisms of excitability.


Assuntos
Cisteína , Músculo Esquelético , Camundongos , Animais , Cisteína/química , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Canais Iônicos , Fluorometria/métodos , Mamíferos
2.
Physiol Rep ; 11(9): e15675, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147904

RESUMO

In skeletal muscle, CaV 1.1 serves as the voltage sensor for both excitation-contraction coupling (ECC) and L-type Ca2+ channel activation. We have recently adapted the technique of action potential (AP) voltage clamp (APVC) to monitor the current generated by the movement of intramembrane voltage sensors (IQ ) during single imposed transverse tubular AP-like depolarization waveforms (IQAP ). We now extend this procedure to monitoring IQAP , and Ca2+ currents during trains of tubular AP-like waveforms in adult murine skeletal muscle fibers, and compare them with the trajectories of APs and AP-induced Ca2+ release measured in other fibers using field stimulation and optical probes. The AP waveform remains relatively constant during brief trains (<1 sec) for propagating APs in non-V clamped fibers. Trains of 10 AP-like depolarizations at 10 Hz (900 ms), 50 Hz (180 ms), or 100 Hz (90 ms) did not alter IQAP amplitude or kinetics, consistent with previous findings in isolated muscle fibers where negligible charge immobilization occurred during 100 ms step depolarizations. Using field stimulation, Ca2+ release did exhibit a considerable decline from pulse to pulse during the train, also consistent with previous findings, indicating that the decline of Ca2+ release during a short train of APs is not correlated to modification of charge movement. Ca2+ currents during single or 10 Hz trains of AP-like depolarizations were hardly detectable, were minimal during 50 Hz trains, and became more evident during 100 Hz trains in some fibers. Our results verify predictions on the behavior of the ECC machinery in response to AP-like depolarizations and provide a direct demonstration that Ca2+ currents elicited by single AP-like waveforms are negligible, but can become more prominent in some fibers during short high-frequency train stimulation that elicits maximal isometric force.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Camundongos , Animais , Potenciais de Ação/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Acoplamento Excitação-Contração , Cálcio
3.
Channels (Austin) ; 17(1): 2167569, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36642864

RESUMO

The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.


Assuntos
Canais de Cálcio Tipo L , Músculo Esquelético , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Acoplamento Excitação-Contração/fisiologia , Potenciais da Membrana/fisiologia , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
4.
Nat Commun ; 13(1): 7556, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494348

RESUMO

Ca2+ influx through high-voltage-activated calcium channels (HVACCs) controls diverse cellular functions. A critical feature enabling a singular signal, Ca2+ influx, to mediate disparate functions is diversity of HVACC pore-forming α1 and auxiliary CaVß1-CaVß4 subunits. Selective CaVα1 blockers have enabled deciphering their unique physiological roles. By contrast, the capacity to post-translationally inhibit HVACCs based on CaVß isoform is non-existent. Conventional gene knockout/shRNA approaches do not adequately address this deficit owing to subunit reshuffling and partially overlapping functions of CaVß isoforms. Here, we identify a nanobody (nb.E8) that selectively binds CaVß1 SH3 domain and inhibits CaVß1-associated HVACCs by reducing channel surface density, decreasing open probability, and speeding inactivation. Functionalizing nb.E8 with Nedd4L HECT domain yielded Chisel-1 which eliminated current through CaVß1-reconstituted CaV1/CaV2 and native CaV1.1 channels in skeletal muscle, strongly suppressed depolarization-evoked Ca2+ influx and excitation-transcription coupling in hippocampal neurons, but was inert against CaVß2-associated CaV1.2 in cardiomyocytes. The results introduce an original method for probing distinctive functions of ion channel auxiliary subunit isoforms, reveal additional dimensions of CaVß1 signaling in neurons, and describe a genetically-encoded HVACC inhibitor with unique properties.


Assuntos
Canais de Cálcio , Miócitos Cardíacos , Canais de Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Domínios de Homologia de src , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583989

RESUMO

The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation-contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels' VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Acoplamento Excitação-Contração , Ativação do Canal Iônico , Camundongos , Coelhos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA