Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892055

RESUMO

Red blood cell (RBC) transfusion, limited by patient alloimmunization, demands accurate blood group typing. The Rh system requires specific attention due to the limitations of serological phenotyping methods. Although these have been compensated for by molecular biology solutions, some RhCE ambiguities remain unresolved. The RHCE mRNA length is compatible with full-length analysis and haplotype discrimination, but the RHCE mRNA analyses reported so far are based on reticulocyte isolation and molecular biology protocols that are fastidious to implement in a routine context. We aim to present the most efficient reticulocyte isolation method, combined with an RT-PCR sequencing protocol that embraces the phasing of all haplotype configurations and identification of any allele. Two protocols were tested for reticulocyte isolation based either on their size/density properties or on their specific antigenicity. We show that the reticulocyte sorting method by antigen specificity from EDTA blood samples collected up to 48 h before processing is the most efficient and that the combination of an RHCE-specific RT-PCR followed by RHCE allele-specific sequencing enables analysis of cDNA RHCE haplotypes. All samples analyzed show full concordance between RHCE phenotype and haplotype sequencing. Two samples from the immunohematology laboratory with ambiguous results were successfully analyzed and resolved, one of them displaying a novel RHCE allele (RHCE*03 c.340C>T).


Assuntos
Alelos , Haplótipos , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Reticulócitos/metabolismo , RNA Mensageiro/genética , Transfusão de Sangue/métodos , Fenótipo
2.
Genes (Basel) ; 13(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741820

RESUMO

Immunohematology laboratories are regularly facing transfusion issues due to serological weaknesses. Altered (partial) RH antigens account for most of them. In some situations, RHCE variant alleles are involved. Herein we present our three-step molecular exploration, with allele frequencies, that has efficiently untangled RH2 phenotype weaknesses and discrepancies in our 2017-2021 cohort. In the last 5 years, the PACA Corse EFS molecular platform received 265 samples from healthy blood donors or patients with C and C/e typing difficulties. The first-intention technique (DNA array and real time PCR for RHCE*CeRN research) detected RHCE variant alleles in 143 cases (54%). The RHCE alleles classically found in African populations were the most frequent, with RHCE*CeRN allele in 40 cases (15%) and (C)ces haplotype type 1 and 2 in 26 cases (10%). A "CE" effect haplotype was suspected in 56 cases, due to the uncommon DCE haplotype that may explain the low C expression. When there were no RHCE*Ce or RHCE*CE alleles, we then searched for RHD polymorphisms by DNA array. We detected the RHD*DAU5 and RHD*DIVa in 18 and 7 cases respectively, suggesting that C ambiguity is related to the presence of these alleles which has never been described with DAU5. If no variant RHCE and RHD alleles were detected, we finally sequenced the 10 exons of both RHCE and RHD genes according to the clinical context and found seven new RHCE alleles. Thus, this molecular strategy would improve the knowledge of RHCE variants' expression and, thus, optimize the transfusion management.


Assuntos
Sistema do Grupo Sanguíneo Rh-Hr , Alelos , Éxons , Frequência do Gene , Haplótipos , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA