Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 73(6): 441-452, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397836

RESUMO

Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.

2.
Front Plant Sci ; 12: 782706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975968

RESUMO

Climate warming may threaten the germination strategies of many plants that are uniquely adapted to today's climate. For instance, species that employ physical dormancy (PY) - the production of seeds that are impermeable to water until high temperatures break them, consequently synchronizing germination with favorable growing conditions - may find that their seeds germinate during unfavorable or potentially fatal periods if threshold temperatures are reached earlier in the year. To explore this, we subjected the seeds of five species with physical dormancy (from the genera Abrus, Bauhinia, Cassia, Albizia, and Acacia) to "mild" (+2°C) and "extreme" (+4°C) future warming scenarios and documented their germination over 2 years relative to a control treatment. Under current climatic conditions, a proportion of seeds from all five species remained dormant in the soil for 2 years. A mild warming of 2°C had little to no effect on the germination of four of the five study species. Contrastingly, an extreme warming of 4°C dramatically increased germination in all five species within the first year, indicating a reduction in their ability to persist in the soil long-term. Cassia fistula was particularly susceptible to warming, exhibiting a similar increase in germination under both mild and extreme warming relative to control. Our findings suggest that climate warming in the tropics may cause the seeds of species that rely on physical dormancy to stagger the risk of unsuccessful germination across years to leave soil seed banks prematurely - the long-term implications of which remain unknown.

3.
Sci Rep ; 9(1): 9695, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273277

RESUMO

Impermeable seed coats, i.e. physical dormancy (PY) influence the germination ecology of plants from 18 angiosperm families. Astragalus adsurgens (Fabaceae; Papilinoidaae) is a perennial plant widespread in temperate regions that is thought to produce both permeable and impermeable seeds. Why seeds vary in the permeability of their coat, in addition to the mechanisms by which impermeable seeds break dormancy, are not completely understood. However, seeds are often consumed by herbivores; a phenomenon that might facilitate the germination of impermeable seeds. Here, we tested whether: (1) moisture content plays a significant role in the onset of seed coat impermeability (and therefore PY) at similar ranges reported for species from tropical ecosystems; and (2) the presence of impermeable coats offer any benefits for seed survival when consumed by animals. We tested these hypotheses using A. adsurgens seeds collected from Inner Mongolia, China. Freshly collected seeds with a moisture content of 9.7% were permeable to water and therefore not physically dormant. However, seeds became impermeable when dried below a threshold of 6.5% moisture content. Treating impermeable seeds with hydrochloric acid effectively broke dormancy. Scanning electron microscope (SEM) revealed that HCl treated seeds had a narrow opening in the hilum and extra-hilar regions, through which water entered. Seeds with impermeable coats survived significantly better than permeable seeds when consumed by cows. Irrespective of coat permeability, most seeds were egested between 12 and 24 h. In seeds that maintained dormancy after gut passage, this was broken by additional acid scarification. Overall results suggest that: (1) seed coat impermeability is induced by reduced moisture content; (2) imbibition primarily occurs at the hilum and extra-hilar region; and (3) impermeable seeds may benefit from endozoochory.


Assuntos
Astrágalo/embriologia , Permeabilidade da Membrana Celular , Germinação , Dormência de Plantas , Sementes/metabolismo , Água/metabolismo , Astrágalo/metabolismo , Astrágalo/ultraestrutura , China , Ecologia , Ecossistema , Microscopia Eletrônica de Varredura , Sementes/ultraestrutura
4.
AoB Plants ; 10(5): ply048, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30254728

RESUMO

Dormancy caused by impermeable seed coats, i.e. physical dormancy (PY), regulates the timing of seed germination in species of several genera belonging to 18 angiosperm families. Physical dormancy also occurs in some mimetic species whose seeds mimic brightly coloured, fleshy fruits or arilled seeds. However, the conditions that break dormancy, as well as the location of water gaps in mimetic seeds, remain unclear. Here, we investigated the adaptive role of impermeable coats in the mimetic seeds of Adenanthera pavonina (Fabaceae: Mimosoideae). Specifically, we explored: (i) the conditions that break PY; (ii) the location of the primary water gap that forms during dormancy break; and (iii) the effect of seasonal temperature regimes on seed germination. Seeds were subjected to hot-water treatment, rapid temperature fluctuations and storage at temperatures mimicking summer and autumn conditions. Seed coat anatomy and water-gap regions were characterized using scanning electron microscopy (SEM) and light microscopy. Seeds were artificially buried in the field at 3 and 7 cm depths and exhumed every 6 months for 2 years to monitor germination. Adenanthera pavonina had impermeable seed coats, and thus PY. Seeds treated with hot water and exposed to summer-autumn temperature regimes broke dormancy. Water entered only through the lens (Type-II simple) due to dislodgement of the palisade layer. Seeds buried at 3 cm depth had significantly higher germination than those buried at 7 cm depth, with germination primarily occurring in autumn. Seeds required high summer temperatures followed by moderate autumn temperatures to become permeable to water and germinate in the field during the wet season. We conclude that the impermeable seed coat of A. pavonina is an adaptation that synchronizes germination with the growing season.

5.
Integr Zool ; 13(3): 339-347, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29537723

RESUMO

Conceptualizing species interactions as networks has broadened our understanding of ecological communities. However, the factors shaping interaction patterns among species and, therefore, network structure remain unclear. One potentially important factor is the matching of phenotypic traits. Here, we tested for trait matching in a bird-flower visitation network from New Zealand. We first quantified the overall network structure and tested whether flower size could account for differences in the visitation rates of flowering plants. We then explored the relationship between the flower size and bill size. The results showed that the interaction network is nested. Plant species with large flowers received more visits from birds than plant species with small flowers. Moreover, plant species with large flowers were visited more frequently by birds with large bills, while species with smaller flowers were visited more frequently by birds with small bills. Overall, the interaction patterns between birds and flowering plants could be predicted by their morphology, suggesting that phenotypic trait matching is an important predictor of network structure.


Assuntos
Aves/fisiologia , Flores/fisiologia , Magnoliopsida , Polinização , Animais , Nova Zelândia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA