Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39252916

RESUMO

Background: Alternating hemiplegia of childhood (AHC) is a rare disorder with both neurologic and cardiac manifestations. The ATP1A3-D801N variant is associated with a pathologically short QT interval and risk of ventricular arrhythmia following bradycardia; however, the mechanism of this remains unknown. We investigated the relationship between heart rate (HR), QT, and QTc, hypothesizing that individuals with ATP1A3-D801N have abnormal, impaired shortening of QT and QTc at lower HR leading to arrhythmia predisposition. Methods: We performed a retrospective observational study of individuals who underwent clinical evaluation, Holter monitoring, and genetic testing for AHC at Duke University Hospitals. We also compiled a group of healthy individuals as a control cohort. A larger, worldwide cohort of individuals with ATP1A3 - related phenotypes was compiled to investigate sinus node dysfunction. Linear regression analysis was then performed. Results: The cohort consisted of 44 individuals with ATP1A3 -related phenotypes with 81 Holter recordings (52.27% female; mean age at first Holter 8.04 years, range 0.58 - 33 years), compared to 36 healthy individuals with 57 Holter recordings (52.78% female; mean age at first Holter 9.84 years, range 0.08 - 38 years). Individuals with ATP1A3-D801N had reduced prolongation of QT at lower HR, manifest as a significantly lower slope for HR vs QT compared to healthy (P<0.0001). This resulted in a significantly higher slope of the relationship for HR vs QTc compared to healthy (P<0.0001). Individuals with ATP1A3 - related phenotypes and baseline QTc <350 milliseconds (ms) had increased shortening of QT and QTc at lower HR compared to those with normal QTc (P=0.003; P=0.001). Among worldwide cases, 3 out of 131 individuals with ATP1A3 -related phenotypes required device implantation and/or had sinus pauses >4 seconds. Conclusions: Individuals with the ATP1A3-D801N variant exhibit paradoxical shortening of QT and QTc at lower HR, which contribute to an increased risk of arrhythmias during bradycardia. This is exacerbated by an underlying risk of sinus node dysfunction. Clinical Perspective: What is Known: Individuals with ATP1A3-D801N have a short baseline QTc.Two individuals with AHC experienced ventricular fibrillation following bradycardia. What the Study Adds: The QT and QTc shorten to a greater extent at lower heart rate in individuals with ATP1A3-D801N than in healthy individuals. Individuals with ATP1A3 -related phenotypes and QTc <350ms show greater impairment of QT and QTc dynamics than those with normal QTc. There is low prevalence of device implantation and significant sinus pauses in individuals with ATP1A3 -related phenotypes, with a relatively greater prevalence in those with ATP1A3-D801N.

2.
Circ Arrhythm Electrophysiol ; 16(2): e010858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706317

RESUMO

BACKGROUND: Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak. METHODS: A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function. RESULTS: Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block. CONCLUSIONS: Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Cálcio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial , Trocador de Sódio e Cálcio/metabolismo
3.
JACC Basic Transl Sci ; 8(12): 1577-1588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205351

RESUMO

Junctional ectopic tachycardia (JET) is a potentially fatal cardiac arrhythmia. Hcn4:shJph2 mice serve as a model of nodal arrhythmias driven by ryanodine type 2 receptor (RyR2)-mediated Ca2+ leak. EL20 is a small molecule that blocks RyR2 Ca2+ leak. In a novel in vivo model of JET, Hcn4:shJph2 mice demonstrated rapid conversion of JET to sinus rhythm with infusion of EL20. Primary atrioventricular nodal cells demonstrated increased Ca2+ transient oscillation frequency and increased RyR2-mediated stored Ca2+ leak which was normalized by EL20. EL20 was found to be rapidly degraded in mouse and human plasma, making it a potential novel therapy for JET.

4.
Curr Opin Genet Dev ; 76: 101978, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058060

RESUMO

Pediatric sudden cardiac death (SCD) is the sudden unexpected death of a child or adolescent due to a presumed cardiac etiology. Heritable causes of pediatric SCD are predominantly cardiomyopathies and cardiac ion channelopathies. This review illustrates recent advances in determining the genetic cause of established and emerging channelopathies and cardiomyopathies, and how broader genomic sequencing is uncovering complex interactions between genetic architecture and disease manifestation. We discuss innovative models and experimental platforms for resolving the variant of uncertain significance as both the variants and genes associated with disease continue to evolve. Finally, we highlight the growing problem of incidentally identified variants in cardiovascular disease-causing genes and review innovative methods to determining whether these variants may ultimately result in penetrant disease. Overall, we seek to illustrate both the promise and inherent challenges in bridging the traditional role for genetics in diagnosing cardiomyopathies and channelopathies to one of true risk-predictive precision medicine.


Assuntos
Cardiomiopatias , Canalopatias , Adolescente , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Canalopatias/complicações , Canalopatias/diagnóstico , Canalopatias/genética , Criança , Morte Súbita Cardíaca/etiologia , Técnicas e Procedimentos Diagnósticos/efeitos adversos , Testes Genéticos , Genômica , Humanos , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA