Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 158: 114082, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36508996

RESUMO

BACKGROUND: The systemic inflammatory response following severe COVID-19 is associated with poor outcomes. Several anti-inflammatory medications have been studied in COVID-19 patients. Xanthohumol (Xn), a natural extract from hop cones, possesses strong anti-inflammatory and antioxidative properties. The aim of this study was to analyze the effect of Xn on the inflammatory response and the clinical outcome of COVID-19 patients. METHODS: Adult patients treated for acute respiratory failure (PaO2/FiO2 less than 150) were studied. Patients were randomized into two groups: Xn - patients receiving adjuvant treatment with Xn at a daily dose of 4.5 mg/kg body weight for 7 days, and C - controls. Observations were performed at four time points: immediately after admission to the ICU and on the 3rd, 5th, and 7th days of treatment. The inflammatory response was assessed based on the plasma IL-6 concentration, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP) and D-dimer levels. The mortality rate was determined 28 days after admission to the ICU. RESULTS: Seventy-two patients were eligible for the study, and 50 were included in the final analysis. The mortality rate was significantly lower and the clinical course was shorter in the Xn group than in the control group (20% vs. 48%, p < 0.05, and 9 ± 3 days vs. 22 ± 8 days, p < 0.001). Treatment with Xn decreased the plasma IL-6 concentration (p < 0.01), D-dimer levels (p < 0.05) and NLR (p < 0.01) more significantly than standard treatment alone. CONCLUSION: Adjuvant therapy with Xn appears to be a promising anti-inflammatory treatment in COVID-19 patients.


Assuntos
COVID-19 , Humulus , Adulto , Humanos , Estado Terminal , Interleucina-6 , Progressão da Doença
2.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806098

RESUMO

Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain-heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Cardiopatias , Melatonina , Antioxidantes/farmacologia , Encéfalo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico
3.
J Clin Med ; 10(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830656

RESUMO

INTRODUCTION: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. METHODS: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. RESULTS: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). CONCLUSION: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.

4.
J Clin Med ; 10(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575255

RESUMO

Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability. These effects are related not only to the type of hyperosmotic agents, but also to the level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may already induce cardiac and immune system disorders. The present review focuses on the adverse effects of hyperosmolality on the function of various organs.

5.
J Clin Med ; 10(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209017

RESUMO

Measurement of cerebral oximetry by near-infrared spectroscopy provides continuous and non-invasive information about the oxygen saturation of haemoglobin in the central nervous system. This is especially important in the case of patients with traumatic brain injuries. Monitoring of cerebral oximetry in these patients could allow for the diagnosis of inadequate cerebral oxygenation caused by disturbances in cerebral blood flow. It could enable identification of episodes of hypoxia and cerebral ischemia. Continuous bedside measurement could facilitate the rapid diagnosis of intracranial bleeding or cerebrovascular autoregulation disorders and accelerate the implementation of treatment. However, it should be remembered that the method of monitoring cerebral oximetry by means of near-infrared spectroscopy also has its numerous limitations, resulting mainly from its physical properties. This paper summarizes the usefulness of monitoring cerebral oximetry by near-infrared spectroscopy in patients with traumatic brain injury, taking into account the advantages and the disadvantages of this technique.

6.
Cardiol J ; 27(6): 705-714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30575004

RESUMO

BACKGROUND: Lung resection changes intra-thoracic anatomy, which may affect electrocardiographic results. While postoperative cardiac arrhythmias have been recognized after lung resection, no study has documented changes in vectorcardiographic variables in patients undergoing this surgery. The purpose of this study was to analyse changes in spatial QRS-T angle (spQRS-T) and corrected QT interval (QTc) after lung resection. METHODS: Adult patients undergoing elective lung resection under general anaesthesia were studied. The patients were allocated into four groups: those undergoing (1) left lobectomy (LL); (2) left pneumonectomy (LP); (3) right lobectomy (RL); and (4) right pneumonectomy (RP). The spQRS-T angle and QTc interval were measured one day before surgery (baseline) and 24, 48 and 72 h after surgery. RESULTS: Seventy-one adult patients (47 men and 24 women) aged 47-80 (65 ± 7) years were studied. In the study group as a whole, lung resection was associated with significant increases in spQRS-T (p < 0.001) and QTc (p < 0.05 at 24 and 48 h and p < 0.01 at 72 h). The greatest changes were noted in patients undergoing LP. Postoperative atrial fibrillation (AF) was noted in 6.4% of patients studied, in whom the widest spQRS-T angle and the most prolonged QTc intervals were also noted. CONCLUSIONS: Lung resection widens the spQRS-T angle and prolongs the QTc interval, especially in patients undergoing LP. While postoperative AF was a relatively rare complication after lung resection in this study, it was associated with the widest spQRS-T angles and most prolonged QTc intervals.


Assuntos
Fibrilação Atrial , Síndrome do QT Longo , Adulto , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Eletrocardiografia , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Masculino
7.
Biomed Opt Express ; 10(7): 3434-3446, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467788

RESUMO

An intra-abdominal pressure (IAP) is correlated with cerebral perfusion, in a mechanism of reducing venous outflow. The elevated intra-abdominal pressure leads to an increase in the intracranial pressure and a decrease in the cerebral perfusion pressure. We studied the relationship between the IAP and the cerebral oxygenation with the use of the near infrared spectroscopy technique during a gynecological surgery. The changes in hemoglobin concentrations were analyzed in the time-frequency domain in the frequency band related to respiration. The measurements were carried out in 15 subjects who underwent laparoscopic surgery. During the laparoscopy, the intra-abdominal cavity was insufflated with CO2, which caused a controlled increase in the IAP. It was observed that the amplitudes of respiration-related waves present in hemoglobin concentration signals show an increase of 1.5 to 8.5 times during elevation of the IAP by 15 mmHg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA