Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(5): e17266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240411

RESUMO

The Australian lungfish is a primitive and endangered representative of the subclass Dipnoi. The distribution of this species is limited to south-east Queensland, with some populations considered endemic and others possibly descending from translocations in the late nineteenth century shortly after European discovery. Attempts to resolve the historical distribution of this species have met with conflicting results based on descriptive genetic studies. Understanding if all populations are endemic or some are the result of, or influenced by, translocation events, has implications for conservation management. In this work, we analysed the genetic variation at three types of markers (mtDNA genomes, 11 STRs and 5196 nuclear SNPs) using the approximate Bayesian computation (ABC) algorithm to compare several demographic models. We postulated different contributions of Mary River and Burnett River gene pools into the Brisbane River and North Pine River populations, related to documented translocation events. We ran the analysis for each marker type separately, and we also estimated the posterior probabilities of the models combining the markers. Nuclear SNPs have the highest power to correctly identify the true model among the simulated datasets (where the model was known), but different marker types typically provided similar answers. The most supported demographic model able to explain the real dataset implies that an endemic gene pool is still present in the Brisbane and North Pine Rivers and coexists with the gene pools derived from past documented translocation events. These results support the view that ABC modelling can be useful to reconstruct complex historical translocation events with contemporary implications, and will inform ongoing conservation efforts for the endangered and iconic Australian lungfish.


Assuntos
Peixes , Animais , Teorema de Bayes , Austrália , Peixes/genética , Queensland
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671664

RESUMO

Nonadaptive hypotheses on the evolution of eukaryotic genome size predict an expansion when the process of purifying selection becomes weak. Accordingly, species with huge genomes, such as lungfish, are expected to show a genome-wide relaxation signature of selection compared with other organisms. However, few studies have empirically tested this prediction using genomic data in a comparative framework. Here, we show that 1) the newly assembled transcriptome of the Australian lungfish, Neoceratodus forsteri, is characterized by an excess of pervasive transcription, or transcriptional leakage, possibly due to suboptimal transcriptional control, and 2) a significant relaxation signature in coding genes in lungfish species compared with other vertebrates. Based on these observations, we propose that the largest known animal genomes evolved in a nearly neutral scenario where genome expansion is less efficiently constrained.


Assuntos
Peixes , Genômica , Animais , Austrália , Peixes/genética , Tamanho do Genoma , Seleção Genética
3.
BMC Biol ; 21(1): 157, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443008

RESUMO

BACKGROUND: Aphids are common crop pests. These insects reproduce by facultative parthenogenesis involving several rounds of clonal reproduction interspersed with an occasional sexual cycle. Furthermore, clonal aphids give birth to live young that are already pregnant. These qualities enable rapid population growth and have facilitated the colonisation of crops globally. In several cases, so-called "super clones" have come to dominate agricultural systems. However, the extent to which the sexual stage of the aphid life cycle has shaped global pest populations has remained unclear, as have the origins of successful lineages. Here, we used chromosome-scale genome assemblies to disentangle the evolution of two global pests of cereals-the English (Sitobion avenae) and Indian (Sitobion miscanthi) grain aphids. RESULTS: Genome-wide divergence between S. avenae and S. miscanthi is low. Moreover, comparison of haplotype-resolved assemblies revealed that the S. miscanthi isolate used for genome sequencing is likely a hybrid, with one of its diploid genome copies closely related to S. avenae (~ 0.5% divergence) and the other substantially more divergent (> 1%). Population genomics analyses of UK and China grain aphids showed that S. avenae and S. miscanthi are part of a cryptic species complex with many highly differentiated lineages that predate the origins of agriculture. The complex consists of hybrid lineages that display a tangled history of hybridisation and genetic introgression. CONCLUSIONS: Our analyses reveal that hybridisation has substantially contributed to grain aphid diversity, and hence, to the evolutionary potential of this important pest species. Furthermore, we propose that aphids are particularly well placed to exploit hybridisation events via the rapid propagation of live-born "frozen hybrids" via asexual reproduction, increasing the likelihood of hybrid lineage formation.


Assuntos
Afídeos , Animais , Afídeos/genética , Poaceae , Reprodução Assexuada , Reprodução , Genômica
4.
J Hered ; 114(3): 279-285, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36866448

RESUMO

The Aeolian wall lizard, Podarcis raffonei, is an endangered species endemic to the Aeolian archipelago, Italy, where it is present only in 3 tiny islets and a narrow promontory of a larger island. Because of the extremely limited area of occupancy, severe population fragmentation and observed decline, it has been classified as Critically Endangered by the International Union for the Conservation of Nature (IUCN). Using Pacific Biosciences (PacBio) High Fidelity (HiFi) long-read sequencing, Bionano optical mapping and Arima chromatin conformation capture sequencing (Hi-C), we produced a high-quality, chromosome-scale reference genome for the Aeolian wall lizard, including Z and W sexual chromosomes. The final assembly spans 1.51 Gb across 28 scaffolds with a contig N50 of 61.4 Mb, a scaffold N50 of 93.6 Mb, and a BUSCO completeness score of 97.3%. This genome constitutes a valuable resource for the species to guide potential conservation efforts and more generally for the squamate reptiles that are underrepresented in terms of available high-quality genomic resources.


Assuntos
Genoma , Lagartos , Animais , Cromossomos/genética , Genômica , Anotação de Sequência Molecular , Lagartos/genética , Cromossomos Sexuais
5.
BMC Ecol Evol ; 22(1): 131, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344915

RESUMO

BACKGROUND: Hotspots of intraspecific genetic diversity represent invaluable resources for species to cope with environmental changes, and their identification is increasingly recognized as a major goal of conservation ecology research. However, even for iconic and endangered species, conservation strategies are often planned without thorough information on the geographic patterns of genetic variation. Here, we investigated the spatial patterns of genetic variation of the endangered Hermann's tortoise Testudo hermanni in the Italian Peninsula by genotyping 174 individuals at 7 microsatellite loci, with the aim to contribute to planning effective conservation strategies. RESULTS: Ordination-based and Bayesian clustering analyses consistently identified three main genetic clusters, one spread in the central and northern part of the peninsula, and two restricted to southern Italy and Sicily, respectively. The highest levels of genetic diversity were found in populations of the southern cluster and, in particular, at the northern edges of its distribution (He > 0.6, Ar > 2.8 ), that correspond to areas of putative secondary contact and admixture between distinct lineages. Our results clearly identify a hotspot of genetic diversity for the Hermann's tortoise in southern Italy. CONCLUSION: We inferred the evolutionary history and the spatial patterns of genetic variation of the Hermann's tortoise in the Italian Peninsula. We identified three main genetic clusters along the peninsula and a hotspot of intraspecific diversity in southern Italy. Our results underline the urgent need for conservation actions to warrant the long-term persistence of viable tortoise populations in this area. Furthrmore, these data add further evidence to the role of southern Italy as a biodiversity hotspot for temperate fauna, claiming for higher consideration of this area in large scale conservation programs.


Assuntos
Tartarugas , Humanos , Masculino , Animais , Tartarugas/genética , Teorema de Bayes , Repetições de Microssatélites/genética , Variação Genética/genética , Sicília
6.
Evol Appl ; 15(9): 1344-1359, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187190

RESUMO

Assigning individuals to their source populations is crucial for conservation research, especially for endangered species threatened by illegal trade and translocations. Genetic assignment can be achieved with different types of molecular markers, but technical advantages and cost saving are recently promoting the shift from short tandem repeats (STRs) to single nucleotide polymorphisms (SNPs). Here, we designed, developed, and tested a small panel of SNPs for cost-effective geographic assignment of individuals with unknown origin of the endangered Mediterranean tortoise Testudo hermanni. We started by performing a ddRAD-seq experiment on 70 wild individuals of T. hermanni from 38 locations. Results obtained using 3182 SNPs are comparable to those previously obtained using STR markers in terms of genetic structure and power to identify the macro-area of origin. However, our SNPs revealed further insights into the substructure in Western populations, especially in Southern Italy. A small panel of highly informative SNPs was then selected and tested by genotyping 190 individuals using the KASP genotyping chemistry. All the samples from wild populations of known geographic origin were genetically re-assigned with high accuracy to the original population. This reduced SNPs panel represents an efficient molecular tool that enables individuals to be genotyped at low cost (less than €15 per sample) for geographical assignment and identification of hybrids. This information is crucial for the management in-situ of confiscated animals and their possible re-allocation in the wild. Our methodological pipeline can easily be extended to other species.

7.
Forensic Sci Int Genet ; 51: 102447, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401133

RESUMO

The illegal trade has been threatening tortoise populations worldwide for decades. Nowadays, however, DNA typing and forensic genetic approaches allow us to investigate the geographic origin of confiscated animals and to relocate them into the wild, providing that suitable molecular tools and reference data are available. Here we assess the suitability of a small panel of microsatellite markers to investigate patterns of illegal translocations and to assist forensic genetic applications in the endangered Mediterranean land tortoise Testudo hermanni hermanni. Specific allelic ladders were created for each locus and tested on several reference samples. We used the microsatellite panel to (i) increase our understanding of the population genetic structure in wild populations with new data from previously unsampled geographic areas (overall 461 wild individuals from 28 sampling sites); (ii) detect the presence of non-native individuals in wild populations; and (iii) identify the most likely geographic area of origin of 458 confiscated individuals hosted in Italian seizure and recovery centers. Our analysis initially identified six major genetic clusters corresponding to different geographic macro-areas along the Mediterranean range. Long-distance migrants among wild populations, due to translocations, were found and removed from the reference database. Assignment tests allowed us to allocate approximately 70 % of confiscated individuals of unknown origin to one of the six Mediterranean macro-areas. Most of the assigned tortoises belonged to the genetic cluster corresponding to the area where the respective captivity center was located. However, we also found evidence of long-distance origins of confiscated individuals, especially in centers along the Adriatic coast and facing the Balkan regions, a well-known source of illegally traded individuals. Our results clearly show that the microsatellite panel and the reference dataset can play a beneficial role in reintroduction and repatriation projects when confiscated individuals need to be re-assigned to their respective macro-area of origin before release, and can assist future forensic genetic applications in detecting the illegal trade and possession of Testudo hermanni individuals.


Assuntos
Filogeografia , Tartarugas/genética , Animais , Conservação dos Recursos Naturais , Impressões Digitais de DNA , Repetições de Microssatélites
8.
Mol Ecol Resour ; 21(1): 316-326, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985768

RESUMO

Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome-level genome assembly of WAA-representing the first genome sequence from the aphid subfamily Eriosomatinae-using a combination of 10X Genomics linked-reads and in vivo Hi-C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein-coding genes. The assembly is highly complete, including 97% of conserved arthropod single-copy orthologues based on Benchmarking Universal Single-Copy Orthologs (busco) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high-quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect-plant interactions and pest resistance management.


Assuntos
Afídeos , Genoma de Inseto , Animais , Afídeos/genética , Cromossomos de Insetos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA