Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 13(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240833

RESUMO

The medial geniculate body (MGB) is a nucleus of the diencephalon representing a relevant segment of the auditory pathway and is part of the metathalamus. It receives afferent information via the inferior brachium of the inferior colliculus and transmits efferent fibers via acoustic radiations to the auditory cortex. Neural stem cells (NSCs) have been detected in certain areas along the auditory pathway. They are of great importance as the induction of an adult stem cell niche might open a regenerative approach to a causal treatment of hearing disorders. Up to now, the existence of NSCs in the MGB has not been determined. Therefore, this study investigated whether the MGB has a neural stem cell potential. For this purpose, cells were extracted from the MGB of PND 8 Sprague-Dawley rats and cultured in a free-floating cell culture assay, which showed mitotic activity and positive staining for stem cell and progenitor markers. In differentiation assays, the markers ß-III-tubulin, GFAP, and MBP demonstrated the capacity of single cells to differentiate into neuronal and glial cells. In conclusion, cells from the MGB exhibited the cardinal features of NSCs: self-renewal, the formation of progenitor cells, and differentiation into all neuronal lineage cells. These findings may contribute to a better understanding of the development of the auditory pathway.

2.
Semin Cell Dev Biol ; 137: 74-86, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35144861

RESUMO

The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.


Assuntos
Actinas , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Actinas/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos , Processamento de Proteína Pós-Traducional , Audição
3.
Front Neurol ; 13: 885026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720065

RESUMO

The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of "efferent auditory neuropathy." Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.

4.
Cell Calcium ; 101: 102515, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896701

RESUMO

How homeostatic ER calcium fluxes shape cellular calcium signals is still poorly understood. Here we used dual-color calcium imaging (ER-cytosol) and transcriptome analysis to link candidates of the calcium toolkit of astrocytes with homeostatic calcium signals. We found molecular and pharmacological evidence that P/Q-type channel Cacna1a contributes to depolarization-dependent calcium entry in astrocytes. For stimulated ER calcium release, the cells express the phospholipase Cb3, IP3 receptors Itpr1 and Itpr2, but no ryanodine receptors (Ryr1-3). After IP3-induced calcium release, Stim1/2 - Orai1/2/3 most likely mediate SOCE. The Serca2 (Atp2a2) is the candidate for refilling of the ER calcium store. The cells highly express adenosine receptor Adora1a for IP3-induced calcium release. Accordingly, adenosine induces fast ER calcium release and subsequent ER calcium oscillations. After stimulation, calcium refilling of the ER depends on extracellular calcium. In response to SOCE, astrocytes show calcium-induced calcium release, notably even after ER calcium was depleted by extracellular calcium removal in unstimulated cells. In contrast, spontaneous ER-cytosol calcium oscillations were not fully dependent on extracellular calcium, as ER calcium oscillations could persist over minutes in calcium-free solution. Additionally, cell-autonomous calcium oscillations show a second-long spatial and temporal delay in the signal dynamics of ER and cytosolic calcium. Our data reveal a rather strong contribution of homeostatic calcium fluxes in shaping IP3-induced and calcium-induced calcium release as well as spatiotemporal components of intracellular calcium oscillations.


Assuntos
Sinalização do Cálcio , Cálcio , Astrócitos/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Homeostase , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
5.
Stem Cells Int ; 2021: 8871308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33880121

RESUMO

In patients suffering from hearing loss, the reduced or absent neural input induces morphological changes in the cochlear nucleus (CN). Neural stem cells have recently been identified in this first auditory relay. Afferent nerve signals and their impact on the immanent neural stem and progenitor cells already impinge upon the survival of early postnatal cells within the CN. This auditory brainstem nucleus consists of three different subnuclei: the anteroventral cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN), and the dorsal cochlear nucleus (DCN). Since these subdivisions differ ontogenetically and physiologically, the question arose whether regional differences exist in the neurogenic niche. CN from postnatal day nine Sprague-Dawley rats were microscopically dissected into their subnuclei and cultivated in vitro as free-floating cell cultures and as whole-mount organ cultures. In addition to cell quantifications, immunocytological and immunohistological studies of the propagated cells and organ preparations were performed. The PVCN part showed the highest mitotic potential, while the AVCN and DCN had comparable activity. Specific stem cell markers and the ability to differentiate into cells of the neural lineage were detected in all three compartments. The present study shows that in all subnuclei of rat CN, there is a postnatal neural stem cell niche, which, however, differs significantly in its potential. The results can be explained by the origin from different regions in the rhombic lip, the species, and the various analysis techniques applied. In conclusion, the presented results provide further insight into the neurogenic potential of the CN, which may prove beneficial for the development of new regenerative strategies for hearing loss.

6.
Mol Neurobiol ; 58(2): 719-734, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011856

RESUMO

Neural stem cells (NSCs) have been recently identified in the inferior colliculus (IC). These cells are of particular interest, as no casual therapeutic options for impaired neural structures exist. This research project aims to evaluate the neurogenic potential in the rat IC from early postnatal days until adulthood. The IC of rats from postnatal day 6 up to 48 was examined by neurosphere assays and histological sections. In free-floating IC cell cultures, neurospheres formed from animals from early postnatal to adulthood. The amount of generated neurospheres decreased in older ages and increased with the number of cell line passages. Cells in the neurospheres and the histological sections stained positively with NSC markers (Doublecortin, Sox-2, Musashi-1, Nestin, and Atoh1). Dissociated single cells from the neurospheres differentiated and were stained positively for the neural lineage markers ß-III-tubulin, glial fibrillary acidic protein, and myelin basic protein. In addition, NSC markers (Doublecortin, Sox-2, CDK5R1, and Ascl-1) were investigated by qRT-PCR. In conclusion, a neurogenic potential in the rat IC was detected and evaluated from early postnatal days until adulthood. The identification of NSCs in the rat IC and their age-specific characteristics contribute to a better understanding of the development and the plasticity of the auditory pathway and might be activated for therapeutic use.


Assuntos
Envelhecimento/fisiologia , Colículos Inferiores/fisiologia , Neurogênese , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Sobrevivência Celular , Células Cultivadas , Proteína Duplacortina , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Esferoides Celulares/metabolismo
7.
Histochem Cell Biol ; 154(6): 671-681, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32712744

RESUMO

The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.


Assuntos
Cóclea/metabolismo , Chaperonas Moleculares/análise , Tubulina (Proteína)/metabolismo , Animais , Cóclea/citologia , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/biossíntese , Tubulina (Proteína)/química
8.
Stem Cells Int ; 2019: 5831240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781242

RESUMO

The inferior colliculus (IC) is a nucleus of the auditory pathway and its fourth relay station. It integrates afferent information from the superior olivary complex and the cochlear nucleus. To date, no causal therapeutic options are known for damaged neuronal structures in this area. Regenerative medicine offers a potential approach to causally treating hearing impairment. After neural stem cells had been identified in certain areas of the auditory pathway, the question arouses, whether the IC also has a neurogenic potential. Cells from the IC of postnatal day 6 rats were extracted and cultured as neurospheres. Cells in the neurospheres showed mitotic activity and positive stain of neural stem cell markers (Nestin, DCX, Atoh1, and Sox-2). In addition, single cells were differentiated into neuronal and glial cells shown by the markers ß-III-tubulin, GFAP, and MBP. In summary, basic stem cell criteria could be detected and characterized in cells isolated from the IC of the rat. These findings will lead to a better understanding of the development of the auditory pathway and may also be relevant for identifying causal therapeutic approaches in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA