Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Mikrochim Acta ; 191(5): 242, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573524

RESUMO

Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the saturation region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.


Assuntos
COVID-19 , alfa-Fetoproteínas , Humanos , SARS-CoV-2 , Epitopos , Polímeros Molecularmente Impressos , Polímeros
2.
Sci Rep ; 14(1): 5611, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454089

RESUMO

Fluorescent molecule-based direct labeling of amplified DNA is a sensitive method employed across diverse DNA detection and diagnostics systems. However, using pre-labeled primers only allows for the attachment of a single fluorophore to each DNA strand and any modifications of the system are less flexible, requiring new sets of primers. As an alternative, direct labeling of amplified products with modified nucleotides is available, but still poorly characterized. To address these limitations, we sought a direct and adaptable approach to label amplicons produced through Loop-mediated isothermal amplification (LAMP), using labeled nucleotides (dUTPs) rather than primers. The focus of this study was the development and examination of a direct labeling technique of specific genes, including those associated with drug resistance in Mycobacterium tuberculosis. We used 5-(3-Aminoallyl)-2'-deoxyuridine-5'triphosphate, tagged with 5/6-TAMRA (TAMRA-dUTP) for labeling LAMP amplicons during the amplification process and characterized amplification and incorporation efficiency. The optimal TAMRA-dUTP concentration was first determined based on amplification efficiency (0.5% to total dNTPs). Higher concentrations of modified nucleotides reduced or completely inhibited the amplification yield. Target size also showed to be determinant to the success of amplification, as longer sequences showed lower amplification rates, thus less TAMRA incorporated amplicons. Finally, we were able to successfully amplify all four M. tuberculosis target genes using LAMP and TAMRA-modified dUTPs.


Assuntos
Técnicas de Diagnóstico Molecular , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , Primers do DNA/genética , Tuberculose/diagnóstico , Sensibilidade e Especificidade
3.
Microbiol Spectr ; 12(2): e0348023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193660

RESUMO

The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine-N-oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O2-dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase.IMPORTANCEIn bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine-N-oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Metilaminas , Escherichia coli/genética , Ferro/metabolismo , Óperon , Proteínas de Escherichia coli/genética , Fatores de Transcrição/metabolismo , Oxirredutases/genética , Cofatores de Molibdênio , Óxidos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica
4.
J Liposome Res ; 34(1): 135-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37144339

RESUMO

Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipossomos , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Lipídeos , Portadores de Fármacos
5.
Biosensors (Basel) ; 13(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998163

RESUMO

This study focuses on three key aspects: (a) crude throat swab samples in a viral transport medium (VTM) as templates for RT-LAMP reactions; (b) a biotinylated DNA probe with enhanced specificity for LFA readouts; and (c) a digital semi-quantification of LFA readouts. Throat swab samples from SARS-CoV-2 positive and negative patients were used in their crude (no cleaning or pre-treatment) forms for the RT-LAMP reaction. The samples were heat-inactivated but not treated for any kind of nucleic acid extraction or purification. The RT-LAMP (20 min processing time) product was read out by an LFA approach using two labels: FITC and biotin. FITC was enzymatically incorporated into the RT-LAMP amplicon with the LF-LAMP primer, and biotin was introduced using biotinylated DNA probes, specifically for the amplicon region after RT-LAMP amplification. This assay setup with biotinylated DNA probe-based LFA readouts of the RT-LAMP amplicon was 98.11% sensitive and 96.15% specific. The LFA result was further analysed by a smartphone-based IVD device, wherein the T-line intensity was recorded. The LFA T-line intensity was then correlated with the qRT-PCR Ct value of the positive swab samples. A digital semi-quantification of RT-LAMP-LFA was reported with a correlation coefficient of R2 = 0.702. The overall RT-LAMP-LFA assay time was recorded to be 35 min with a LoD of three RNA copies/µL (Ct-33). With these three advancements, the nucleic acid testing-point of care technique (NAT-POCT) is exemplified as a versatile biosensor platform with great potential and applicability for the detection of pathogens without the need for sample storage, transportation, or pre-processing.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , DNA Polimerase Dirigida por RNA/genética , Biotina , Fluoresceína-5-Isotiocianato , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular/métodos , DNA , RNA Viral/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sondas de DNA
6.
Artigo em Inglês | MEDLINE | ID: mdl-37884758

RESUMO

Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.

8.
ACS Omega ; 8(23): 20779-20791, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332787

RESUMO

Multifunctional nanosized metal-organic frameworks (NMOFs) have advanced rapidly over the past decade to develop drug delivery systems (DDSs). These material systems still lack precise and selective cellular targeting, as well as the fast release of the quantity of drugs that are simply adsorbed within and on the external surface of nanocarriers, which hinders their application in the drug delivery. Herein, we designed a biocompatible Zr-based NMOF with an engineered core and the hepatic tumor-targeting ligand, glycyrrhetinic acid grafted to polyethyleneimine (PEI) as the shell. The improved core-shell serves as a superior nanoplatform for efficient controlled and active delivery of the anticancer drug doxorubicin (DOX) against hepatic cancer cells (HepG2 cells). In addition to their high loading capacity of 23%, the developed nanostructure DOX@NMOF-PEI-GA showed an acidic pH-stimulated response and extended the drug release time to 9 days as well as enhanced the selectivity toward the tumor cells. Interestingly, the DOX-free nanostructures showed a minimal toxic effect on both normal human skin fibroblast (HSF) and hepatic cancer cell line (HepG2), but the DOX-loaded nanostructures exhibited a superior killing effect toward the hepatic tumor, thus opening the way for the active drug delivery and achieving efficient cancer therapy applications.

9.
Electrophoresis ; 44(11-12): 956-967, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36892276

RESUMO

Dielectrophoresis (DEP) is an AC electrokinetic effect that is proven to be effective for the immobilization of not only cells, but also of macromolecules, for example, antibodies and enzyme molecules. In our previous work, we have already demonstrated the high catalytic activity of immobilized horseradish peroxidase after DEP. To evaluate the suitability of the immobilization method for sensing or research in general, we want to test it for other enzymes, too. In this study, glucose oxidase (GOX) from Aspergillus niger was immobilized on TiN nanoelectrode arrays by DEP. Fluorescence microscopy showed the intrinsic fluorescence of the immobilized enzymes flavin cofactor on the electrodes. The catalytic activity of immobilized GOX was detectable, but a fraction of less than 1.3% of the maximum activity that was expected for a full monolayer of immobilized enzymes on all electrodes was stable for multiple measurement cycles. Therefore, the effect of DEP immobilization on the catalytic activity strongly depends on the used enzyme.


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Eletrodos , Aspergillus niger , Glucose/análise
10.
Nanoscale ; 14(48): 18106-18114, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36448745

RESUMO

Here we aim to gain a mechanistic understanding of the formation of epitope-imprinted polymer nanofilms using a non-terminal peptide sequence, i.e. the peptide GFNCYFP (G485 to P491) of the SARS-CoV-2 receptor binding domain (RBD). This epitope is chemisorbed on the gold surface through the central cysteine 488 followed by the electrosynthesis of a ∼5 nm thick polyscopoletin film around the surface confined templates. The interaction of peptides and the parent RBD and spike protein with the imprinted polyscopoletin nanofilm was followed by electrochemical redox marker gating, surface enhanced infrared absorption spectroscopy and conductive AFM. Because the use of non-terminal epitopes is especially intricate, here we characterize the binding pockets through their interaction with 5 peptides rationally derived from the template sequence, i.e. implementing central single amino acid mismatch as well as elongations and truncations at its C- and N- termini. Already a single amino acid mismatch, i.e. the central Cys488 substituted by a serine, results in ca. 15-fold lower affinity. Further truncation of the peptides to tetrapeptide (EGFN) and hexapeptide (YFPLQS) results also in a significantly lower affinity. We concluded that the affinity towards the different peptides is mainly determined by the four amino acid motif CYFP present in the sequence of the template peptide. A higher affinity than that for the peptides is found for the parent proteins RBD and spike protein, which seems to be due to out of cavity effects caused by their larger footprint on the nanofilm surface.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Epitopos/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Peptídeos/metabolismo , Aminoácidos
11.
Methods Mol Biol ; 2511: 235-244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35838964

RESUMO

Most people infected by the SARS-CoV-2 virus which causes COVID-19 disease experience mild or no symptoms. Severe forms of the disease are often marked by a hyper-inflammatory response known as a cytokine storm. Thus, biomarker tests which can identify these patients and place them on the appropriate treatment regime at the earliest possible phase would help to improve outcomes. Here we describe an automated microarray-based immunoassay using the Fraunhofer lab-on-a-chip platform for analysis of C-reactive protein due to its role in the hyper-inflammatory response.


Assuntos
COVID-19 , COVID-19/diagnóstico , Citocinas/metabolismo , Humanos , Imunoensaio , Dispositivos Lab-On-A-Chip , SARS-CoV-2
12.
Electrophoresis ; 43(18-19): 1920-1933, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904497

RESUMO

Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2 O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.


Assuntos
Enzimas Imobilizadas , Eletrodos , Peroxidase do Rábano Silvestre
13.
Electrophoresis ; 43(12): 1309-1321, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307846

RESUMO

The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.


Assuntos
Eletro-Osmose , Orthomyxoviridae , Eletricidade , Eletrodos , Microscopia de Fluorescência
14.
Chem Sci ; 13(5): 1263-1269, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35222909

RESUMO

We introduce a practically generic approach for the generation of epitope-imprinted polymer-based microarrays for protein recognition on surface plasmon resonance imaging (SPRi) chips. The SPRi platform allows the subsequent rapid screening of target binding kinetics in a multiplexed and label-free manner. The versatility of such microarrays, both as synthetic and screening platform, is demonstrated through developing highly affine molecularly imprinted polymers (MIPs) for the recognition of the receptor binding domain (RBD) of SARS-CoV-2 spike protein. A characteristic nonapeptide GFNCYFPLQ from the RBD and other control peptides were microspotted onto gold SPRi chips followed by the electrosynthesis of a polyscopoletin nanofilm to generate in one step MIP arrays. A single chip screening of essential synthesis parameters, including the surface density of the template peptide and its sequence led to MIPs with dissociation constants (K D) in the lower nanomolar range for RBD, which exceeds the affinity of RBD for its natural target, angiotensin-convertase 2 enzyme. Remarkably, the same MIPs bound SARS-CoV-2 virus like particles with even higher affinity along with excellent discrimination of influenza A (H3N2) virus. While MIPs prepared with a truncated heptapeptide template GFNCYFP showed only a slightly decreased affinity for RBD, a single mismatch in the amino acid sequence of the template, i.e. the substitution of the central cysteine with a serine, fully suppressed the RBD binding.

15.
Anal Bioanal Chem ; 414(10): 3177-3186, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044487

RESUMO

The degree of detrimental effects inflicted on mankind by the COVID-19 pandemic increased the need to develop ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable) POCT (point of care testing) to overcome the current and any future pandemics. Much effort in research and development is currently advancing the progress to overcome the diagnostic pressure built up by emerging new pathogens. LAMP (loop-mediated isothermal amplification) is a well-researched isothermal technique for specific nucleic acid amplification which can be combined with a highly sensitive immunochromatographic readout via lateral flow assays (LFA). Here we discuss LAMP-LFA robustness, sensitivity, and specificity for SARS-CoV-2 N-gene detection in cDNA and clinical swab-extracted RNA samples. The LFA readout is designed to produce highly specific results by incorporation of biotin and FITC labels to 11-dUTP and LF (loop forming forward) primer, respectively. The LAMP-LFA assay was established using cDNA for N-gene with an accuracy of 95.65%. To validate the study, 82 SARS-CoV-2-positive RNA samples were tested. Reverse transcriptase (RT)-LAMP-LFA was positive for the RNA samples with an accuracy of 81.66%; SARS-CoV-2 viral RNA was detected by RT-LAMP-LFA for as low as CT-33. Our method reduced the detection time to 15 min and indicates therefore that RT-LAMP in combination with LFA represents a promising nucleic acid biosensing POCT platform that combines with smartphone based semi-quantitative data analysis.


Assuntos
COVID-19 , Ácidos Nucleicos , Biotina , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2/genética
16.
Sci Rep ; 11(1): 20137, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635776

RESUMO

In this report we describe Cy5-dUTP labelling of recombinase-polymerase-amplification (RPA) products directly during the amplification process for the first time. Nucleic acid amplification techniques, especially polymerase-chain-reaction as well as various isothermal amplification methods such as RPA, becomes a promising tool in the detection of pathogens and target specific genes. Actually, RPA even provides more advantages. This isothermal method got popular in point of care diagnostics because of its speed and sensitivity but requires pre-labelled primer or probes for a following detection of the amplicons. To overcome this disadvantages, we performed an labelling of RPA-amplicons with Cy5-dUTP without the need of pre-labelled primers. The amplification results of various multiple antibiotic resistance genes indicating great potential as a flexible and promising tool with high specific and sensitive detection capabilities of the target genes. After the determination of an appropriate rate of 1% Cy5-dUTP and 99% unlabelled dTTP we were able to detect the blaCTX-M15 gene in less than 1.6E-03 ng genomic DNA corresponding to approximately 200 cfu of Escherichia coli cells in only 40 min amplification time.


Assuntos
Antibacterianos/farmacologia , Carbocianinas/química , DNA Bacteriano/genética , Nucleotídeos de Desoxiuracil/química , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Análise em Microsséries , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo
17.
Eur J Immunol ; 51(7): 1839-1849, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33772767

RESUMO

Humoral immunity to the Severe Adult Respiratory Syndrome (SARS) Coronavirus (CoV)-2 is not fully understood yet but is a crucial factor of immune protection. The possibility of antibody cross-reactivity between SARS-CoV-2 and other human coronaviruses (HCoVs) would have important implications for immune protection but also for the development of specific diagnostic ELISA tests. Using peptide microarrays, n = 24 patient samples and n = 12 control samples were screened for antibodies against the entire SARS-CoV-2 proteome as well as the Spike (S), Nucleocapsid (N), VME1 (V), R1ab, and Protein 3a (AP3A) of the HCoV strains SARS, MERS, OC43, and 229E. While widespread cross-reactivity was revealed across several immunodominant regions of S and N, IgG binding to several SARS-CoV-2-derived peptides provided statistically significant discrimination between COVID-19 patients and controls. Selected target peptides may serve as capture antigens for future, highly COVID-19-specific diagnostic antibody tests.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Análise Serial de Proteínas/métodos , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Adulto , Idoso , Sequência de Aminoácidos/genética , Anticorpos Antivirais/imunologia , Coronavirus Humano 229E/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Coronavirus Humano OC43/imunologia , Reações Cruzadas/imunologia , Testes Diagnósticos de Rotina , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Fosfoproteínas/imunologia , Proteoma/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
18.
Anal Bioanal Chem ; 412(16): 3859-3870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125465

RESUMO

The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule's functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules. Graphical Abstract.

19.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924616

RESUMO

Diabetic foot ulcer (DFU) is a major complication of diabetes with high morbidity and mortality rates. The pathogenesis of DFUs is governed by a complex milieu of environmental and host factors. The empirical treatment is initially based on wound severity since culturing and profiling the antibiotic sensitivity of wound-associated microbes is time-consuming. Hence, a thorough and rapid analysis of the microbial landscape is a major requirement toward devising evidence-based interventions. Toward this, 122 wound (100 diabetic and 22 nondiabetic) samples were sampled for their bacterial community structure using both culture-based and next-generation 16S rRNA-based metagenomics approach. Both the approaches showed that the Gram-negative microbes were more abundant in the wound microbiome. The core microbiome consisted of bacterial genera, including Alcaligenes, Pseudomonas, Burkholderia, and Corynebacterium in decreasing order of average relative abundance. Despite the heterogenous nature and extensive sharing of microbes, an inherent community structure was apparent, as revealed by a cluster analysis based on Euclidean distances. Facultative anaerobes (26.5%) were predominant in Wagner grade 5, while strict anaerobes were abundant in Wagner grade 1 (26%). A nonmetric dimensional scaling analysis could not clearly discriminate samples based on HbA1c levels. Sequencing approach revealed the presence of major culturable species even in samples with no bacterial growth in culture-based approach. Our study indicates that (i) the composition of core microbial community varies with wound severity, (ii) polymicrobial species distribution is individual specific, and (iii) antibiotic susceptibility varies with individuals. Our study suggests the need to evolve better-personalized care for better wound management therapies.IMPORTANCE Chronic nonhealing diabetic foot ulcers (DFUs) are a serious complication of diabetes and are further exacerbated by bacterial colonization. The microbial burden in the wound of each individual displays diverse morphological and physiological characteristics with unique patterns of host-pathogen interactions, antibiotic resistance, and virulence. Treatment involves empirical decisions until definitive results on the causative wound pathogens and their antibiotic susceptibility profiles are available. Hence, there is a need for rapid and accurate detection of these polymicrobial communities for effective wound management. Deciphering microbial communities will aid clinicians to tailor their treatment specifically to the microbes prevalent in the DFU at the time of assessment. This may reduce DFUs associated morbidity and mortality while impeding the rise of multidrug-resistant microbes.


Assuntos
Bactérias/isolamento & purificação , Pé Diabético/microbiologia , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Fatores Sexuais , Adulto Jovem
20.
Sci Rep ; 9(1): 14372, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591434

RESUMO

Most biochemical reactions depend on the pH value of the aqueous environment and some are strongly favoured to occur in an acidic environment. A non-invasive control of pH to tightly regulate such reactions with defined start and end points is a highly desirable feature in certain applications, but has proven difficult to achieve so far. We report a novel optical approach to reversibly control a typical biochemical reaction by changing the pH and using acid phosphatase as a model enzyme. The reversible photoacid G-acid functions as a proton donor, changing the pH rapidly and reversibly by using high power UV LEDs as an illumination source in our experimental setup. The reaction can be tightly controlled by simply switching the light on and off and should be applicable to a wide range of other enzymatic reactions, thus enabling miniaturization and parallelization through non-invasive optical means.


Assuntos
Fosfatase Ácida/química , Ácidos/química , Fenômenos Bioquímicos , Microambiente Celular/fisiologia , Concentração de Íons de Hidrogênio , Óptica e Fotônica , Prótons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA