Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(9): 097601, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506184

RESUMO

Electric fields were applied to multiferroic TbMnO_{3} single crystals to control the chiral domains, and the domain relaxation was studied over 8 decades in time by means of polarized neutron scattering. A surprisingly simple combination of an activation law and the Merz law describes the relaxation times in a wide range of electric field and temperature with just two parameters, an activation-field constant and a characteristic time representing the fastest possible inversion. Over the large part of field and temperature values corresponding to almost 6 orders of magnitude in time, multiferroic domain inversion is thus dominated by a single process, the domain wall motion. Only when approaching the multiferroic transition other mechanisms yield an accelerated inversion.

2.
Phys Rev Lett ; 119(17): 177201, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219446

RESUMO

Polarized neutron scattering experiments reveal that type-II multiferroics allow for controlling the spin chirality by external electric fields even in the absence of long-range multiferroic order. In the two prototype compounds TbMnO_{3} and MnWO_{4}, chiral magnetism associated with soft overdamped electromagnons can be observed above the long-range multiferroic transition temperature T_{MF}, and it is possible to control it through an electric field. While MnWO_{4} exhibits chiral correlations only in a tiny temperature interval above T_{MF}, in TbMnO_{3} chiral magnetism can be observed over several kelvin up to the lock-in transition, which is well separated from T_{MF}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA