Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(1): 365-374, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27981847

RESUMO

The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Agricultura , Animais , Abastecimento de Alimentos , Agricultura Florestal , Efeito Estufa
2.
PLoS One ; 10(11): e0139201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536124

RESUMO

Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.


Assuntos
Abastecimento de Alimentos/economia , Agricultura , Animais , Criança , Mortalidade da Criança , Bases de Dados Factuais , Ingestão de Alimentos , Abastecimento de Alimentos/história , História do Século XXI , Humanos , Renda , Modelos Teóricos , Análise de Regressão
3.
Environ Sci Technol ; 49(11): 6731-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25939014

RESUMO

Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.


Assuntos
Agricultura , Ciclo do Carbono , Mudança Climática , Carbono/análise , Dióxido de Carbono/análise , Sequestro de Carbono , Fatores de Tempo
4.
Nat Commun ; 5: 3858, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24819889

RESUMO

Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.


Assuntos
Produtos Agrícolas/provisão & distribuição , Poluição Ambiental/prevenção & controle , Abastecimento de Alimentos , Crescimento Demográfico , Espécies Reativas de Nitrogênio/provisão & distribuição , Animais , Produtos Agrícolas/metabolismo , Humanos , Modelos Teóricos , Fixação de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA