Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Wound Care (New Rochelle) ; 8(1): 14-27, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30705786

RESUMO

Objective: To better understand Acinetobacter baumannii pathogenesis and to advance drug discovery against this pathogen, we developed a porcine, full-thickness, excisional, monospecies infection wound model. Approach: The research was facilitated with AB5075, a previously characterized, extensively drug-resistant A. baumannii isolate. The model requires cyclophosphamide-induced neutropenia to establish a skin and soft tissue infection (SSTI) that persists beyond 7 days. Multiple, 12-mm-diameter full-thickness wounds were created in the skin overlying the cervical and thoracic dorsum. Wound beds were inoculated with 5.0 × 104 colony-forming units (CFU) and covered with dressing. Results: A. baumannii was observed in the wound bed and on the dressing in what appeared to be biofilm. When bacterial burdens were measured, proliferation to at least 106 CFU/g (log106) wound tissue was observed. Infection was further characterized by scanning electron microscopy (SEM) and peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) staining. To validate as a treatment model, polymyxin B was applied topically to a subset of infected wounds every 2 days. Then, the treated and untreated wounds were compared using multiple quantitative and qualitative techniques to include gross pathology, CFU burden, histopathology, PNA-FISH, and SEM. Innovation: This is the first study to use A. baumannii in a porcine model as the sole infectious agent. Conclusion: The porcine model allows for an additional preclinical assessment of antibacterial candidates that show promise against A. baumannii in rodent models, further evaluating safety and efficacy, and serve as a large animal in preclinical assessment for the treatment of SSTI.

2.
PLoS One ; 13(10): e0205526, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304066

RESUMO

Staphylococcal extracellular polymeric substances (EPS) such as extracellular DNA (eDNA) and poly-N-acetylglucosamine surface polysaccharide (PNAG) mediate numerous virulence traits including host colonization and antimicrobial resistance. Previous studies showed that EPS-degrading enzymes increase staphylococcal biocide susceptibility in vitro and in vivo, and decrease virulence in animal models. In the present study we tested the effect of EPS-degrading enzymes on staphylococcal skin colonization and povidone iodine susceptibility using a novel in vivo pig model that enabled us to colonize and treat 96 isolated areas of skin on a single animal in vivo. To quantitate skin colonization, punch biopsies of colonized areas were homogenized, diluted, and plated on agar for colony forming unit enumeration. Skin was colonized with either Staphylococcus epidermidis or Staphylococcus aureus. Two EPS-degrading enzymes, DNase I and the PNAG-degrading enzyme dispersin B, were employed. Enzymes were tested for their ability to inhibit skin colonization and detach preattached bacteria. The effect of enzymes on the susceptibility of preattached S. aureus to killing by povidone iodine was also measured. We found that dispersin B significantly inhibited skin colonization by S. epidermidis and detached preattached S. epidermidis cells from skin. A cocktail of dispersin B and DNase I detached preattached S. aureus cells from skin and increased their susceptibility to killing by povidone iodine. These findings suggest that staphylococcal EPS components such as eDNA and PNAG contribute to skin colonization and biocide resistance in vivo. EPS-degrading enzymes may be a useful adjunct to conventional skin antisepsis procedures in order to further reduce skin bioburden.


Assuntos
Antibacterianos/farmacologia , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Povidona-Iodo/farmacologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Staphylococcus epidermidis , Animais , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/fisiologia , Desoxirribonuclease I/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Matriz Extracelular de Substâncias Poliméricas/enzimologia , Feminino , Humanos , Proteínas Recombinantes/farmacologia , Infecções Cutâneas Estafilocócicas/enzimologia , Infecções Cutâneas Estafilocócicas/patologia , Sus scrofa
3.
Toxicol In Vitro ; 26(1): 182-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22120822

RESUMO

Human prolidase (PROL), which has structural homology to bacterial organophosphate acid anhydrolase that hydrolyze organophosphates and nerve agents has been proposed recently as a potential catalytic bioscavenger. To develop PROL as a catalytic bioscavenger, we evaluated the in vitro hydrolysis efficiency of purified recombinant human PROL against organophosphates and nerve agents. Human liver PROL was purified by chromatographic procedures, whereas recombinant human skin and kidney PROL was expressed in Trichoplusia ni larvae, affinity purified and analyzed by gel electrophoresis. The catalytic efficiency of PROL against diisopropylfluorophosphate (DFP) and nerve agents was evaluated by acetylcholinesterase back-titration assay. Partially purified human liver PROL hydrolyzed DFP and various nerve agents, which was abolished by specific PROL inhibitor showing the specificity of hydrolysis. Both the recombinant human skin and kidney PROL expressed in T. ni larvae showed ∼99% purity and efficiently hydrolyzed DFP and sarin. In contrast to human liver PROL, both skin and kidney PROL showed significantly low hydrolyzing potential against nerve agents soman, tabun and VX. In conclusion, compared to human liver PROL, recombinant human skin and kidney PROL hydrolyze only DFP and sarin showing the substrate specificity of PROL from various tissue sources.


Assuntos
Substâncias para a Guerra Química/química , Inibidores da Colinesterase/química , Dipeptidases/química , Proteínas Recombinantes/química , Acetilcolinesterase/química , Humanos , Hidrólise , Isoflurofato/química , Rim/enzimologia , Fígado/enzimologia , Organofosfatos/química , Compostos Organotiofosforados/química , Sarina/química , Pele/enzimologia
4.
Toxicol In Vitro ; 25(4): 905-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21382471

RESUMO

Paraoxonase 1 (PON1) has been described as a potential catalytic bioscavenger due to its ability to hydrolyze organophosphate (OP) insecticides and nerve agents. In vitro catalytic efficiency of purified human and rabbit serum PON1 against different OP substrates was compared to human recombinant PON1, expressed in Trichoplusia ni larvae. Highly purified human and rabbit serum PON1s were prepared by multiple chromatography methods. Purified enzymes showed higher catalytic activity with the substrate p-nitrophenyl acetate compared to diethyl paraoxon. The hydrolyzing potential of PON1s against multiple OPs was evaluated by using an in vitro acetylcholinesterase back-titration assay. Significant differences in the catalytic efficiency of all the three PON1s with regard to various OP substrates were observed. Purified PON1s showed higher catalytic activity towards diisopropylfluorophosphate followed by diethylparaoxon compared to dimethyl paraoxon. Heat inactivation or incubation of PON1 with specific inhibitor resulted in complete loss of the enzyme catalytic activity indicating that OP hydrolysis was intrinsic to PON1. In conclusion, purified PON1s from multiple sources show significant differences in the catalytic activity against several OP substrates. These results underscore the importance of systematic analysis of candidate PON1 molecules for developing as an effective catalytic bioscavenger against toxic OPs and chemical warfare nerve agents.


Assuntos
Arildialquilfosfatase/farmacologia , Substâncias para a Guerra Química/metabolismo , Inseticidas/metabolismo , Compostos Organofosforados/metabolismo , Acetilcolinesterase/metabolismo , Animais , Catálise , Temperatura Alta , Humanos , Hidrólise , Larva , Mariposas , Coelhos
5.
Biochem Pharmacol ; 81(6): 800-9, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21219877

RESUMO

Human paraoxonase 1 (PON1) has been portrayed as a catalytic bioscavenger which can hydrolyze large amounts of chemical warfare nerve agents (CWNAs) and organophosphate (OP) pesticides compared to the stoichiometric bioscavengers such as butyrylcholinesterase. We evaluated the protective efficacy of purified human and rabbit serum PON1 against nerve agents sarin and soman in guinea pigs. Catalytically active PON1 purified from human and rabbit serum was intravenously injected to guinea pigs, which were 30 min later exposed to 1.2 × LCt50 sarin or soman using a microinstillation inhalation exposure technology. Pre-treatment with 5 units of purified human and rabbit serum PON1 showed mild to moderate increase in the activity of blood PON1, but significantly increased the survival rate with reduced symptoms of CWNA exposure. Although PON1 is expected to be catalytic, sarin and soman exposure resulted in a significant reduction in blood PON1 activity. However, the blood levels of PON1 in pre-treated animals after exposure to nerve agent were higher than that of untreated control animals. The activity of blood acetylcholinesterase and butyrylcholinesterase and brain acetylcholinesterase was significantly higher in PON1 pre-treated animals and were highly correlated with the survival rate. Blood O2 saturation, pulse rate and respiratory dynamics were normalized in animals treated with PON1 compared to controls. These results demonstrate that purified human and rabbit serum PON1 significantly protect against sarin and soman exposure in guinea pigs and support the development of PON1 as a catalytic bioscavenger for protection against lethal exposure to CWNAs.


Assuntos
Arildialquilfosfatase/farmacologia , Sequestradores de Radicais Livres/farmacologia , Sarina/toxicidade , Soman/toxicidade , Animais , Gasometria , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Domínio Catalítico/efeitos dos fármacos , Cobaias , Humanos , Masculino , Substâncias Protetoras/farmacologia , Coelhos
6.
Biochem Biophys Res Commun ; 403(1): 97-102, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21040699

RESUMO

Paraoxonase 1 (PON1) has been described as an efficient catalytic bioscavenger due to its ability to hydrolyze organophosphates (OPs) and chemical warfare nerve agents (CWNAs). It is the future most promising candidate as prophylactic medical countermeasure against highly toxic OPs and CWNAs. Most of the studies conducted so far have been focused on the hydrolyzing potential of PON1 against nerve agents, sarin, soman, and VX. Here, we investigated the hydrolysis of tabun by PON1 with the objective of comparing the hydrolysis potential of human and rabbit serum purified and recombinant human PON1. The hydrolysis potential of PON1 against tabun, sarin, and soman was evaluated by using an acetylcholinesterase (AChE) back-titration Ellman method. Efficient hydrolysis of tabun (100 nM) was observed with ∼25-40 mU of PON1, while higher concentration (80-250 mU) of the enzyme was required for the complete hydrolysis of sarin (11 nM) and soman (3 nM). Our data indicate that tabun hydrolysis with PON1 was ∼30-60 times and ∼200-260 times more efficient than that with sarin and soman, respectively. Moreover, the catalytic activity of PON1 varies from source to source, which also reflects their efficiency of hydrolyzing different types of nerve agents. Thus, efficient hydrolysis of tabun by PON1 suggests its promising potential as a prophylactic treatment against tabun exposure.


Assuntos
Arildialquilfosfatase/metabolismo , Substâncias para a Guerra Química/metabolismo , Inibidores da Colinesterase/metabolismo , Sistema Nervoso/efeitos dos fármacos , Organofosfatos/metabolismo , Animais , Humanos , Hidrólise , Coelhos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA