Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 21(1)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38211341

RESUMO

Objective.The literature investigating the effects of alpha oscillations on corticospinal excitability is divergent. We believe inconsistency in the findings may arise, among others, from the electroencephalography (EEG) processing for brain-state determination. Here, we provide further insights in the effects of the brain-state on cortical and corticospinal excitability and quantify the impact of different EEG processing.Approach.Corticospinal excitability was measured using motor evoked potential (MEP) peak-to-peak amplitudes elicited with transcranial magnetic stimulation (TMS); cortical responses were studied through TMS-evoked potentials' TEPs features. A TMS-EEG-electromyography (EMG) dataset of 18 young healthy subjects who received 180 single-pulse (SP) and 180 paired pulses (PP) to determine short-intracortical inhibition (SICI) was investigated. To study the effect of different EEG processing, we compared the brain-state estimation deriving from three published methods. The influence of presence of neural oscillations was also investigated. To evaluate the effect of the brain-state on MEP and TEP features variability, we defined the brain-state based on specific EEG phase and power combinations, only in trials where neural oscillations were present. The relationship between TEPs and MEPs was further evaluated.Main results.The presence of neural oscillations resulted in more consistent results regardless of the EEG processing approach. Nonetheless, the latter still critically affected the outcomes, making conclusive claims complex. With our approach, the MEP amplitude was positively modulated by the alpha power and phase, with stronger responses during the trough phase and high power. Power and phase also affected TEP features. Importantly, similar effects were observed in both TMS conditions.Significance.These findings support the view that the brain state of alpha oscillations is associated with the variability observed in cortical and corticospinal responses to TMS, with a tight correlation between the two. The results further highlight the importance of closed-loop stimulation approaches while underlining that care is needed in designing experiments and choosing the analytical approaches, which should be based on knowledge from offline studies to control for the heterogeneity originating from different EEG processing strategies.


Assuntos
Potencial Evocado Motor , Córtex Motor , Humanos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados , Encéfalo , Estimulação Magnética Transcraniana/métodos
2.
Med ; 4(9): 591-599.e3, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437575

RESUMO

BACKGROUND: Around 25% of patients who have had a stroke suffer from severe upper-limb impairment and lack effective rehabilitation strategies. The AVANCER proof-of-concept clinical trial (NCT04448483) tackles this issue through an intensive and personalized-dosage cumulative intervention that combines multiple non-invasive neurotechnologies. METHODS: The therapy consists of two sequential interventions, lasting until the patient shows no further motor improvement, for a minimum of 11 sessions each. The first phase involves a brain-computer interface governing an exoskeleton and multi-channel functional electrical stimulation enabling full upper-limb movements. The second phase adds anodal transcranial direct current stimulation of the motor cortex of the lesioned hemisphere. Clinical, electrophysiological, and neuroimaging examinations are performed before, between, and after the two interventions (T0, T1, and T2). This case report presents the results from the first patient of the study. FINDINGS: The primary outcome (i.e., 4-point improvement in the Fugl-Meyer assessment of the upper extremity) was met in the first patient, with an increase from 6 to 11 points between T0 and T2. This improvement was paralleled by changes in motor-network structure and function. Resting-state and transcranial magnetic stimulation-evoked electroencephalography revealed brain functional changes, and magnetic resonance imaging (MRI) measures detected structural and task-related functional changes. CONCLUSIONS: These first results are promising, pointing to feasibility, safety, and potential efficacy of this personalized approach acting synergistically on the nervous and musculoskeletal systems. Integrating multi-modal data may provide valuable insights into underlying mechanisms driving the improvements and providing predictive information regarding treatment response and outcomes. FUNDING: This work was funded by the Wyss-Center for Bio and Neuro Engineering (WCP-030), the Defitech Foundation, PHRT-#2017-205, ERA-NET-NEURON (Discover), and SNSF (320030L_197899, NiBS-iCog).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Medicina de Precisão , Resultado do Tratamento , Acidente Vascular Cerebral/terapia , Extremidade Superior
3.
Sci Rep ; 13(1): 8225, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217502

RESUMO

The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the characterization of thousands of MEPs. Given the difficulty of developing reliable and accurate algorithms, currently the assessment of MEPs is performed with visual inspection and manual annotation by a medical expert; making it a time-consuming, inaccurate, and error-prone process. In this study, we developed DELMEP, a deep learning-based algorithm to automate the estimation of MEP latency. Our algorithm resulted in a mean absolute error of about 0.5 ms and an accuracy that was practically independent of the MEP amplitude. The low computational cost of the DELMEP algorithm allows employing it in on-the-fly characterization of MEPs for brain-state-dependent and closed-loop brain stimulation protocols. Moreover, its learning ability makes it a particularly promising option for artificial-intelligence-based personalized clinical applications.


Assuntos
Aprendizado Profundo , Córtex Motor , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Algoritmos , Eletromiografia
4.
J Neural Eng ; 20(1)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36626830

RESUMO

Objective.Sources of heterogeneity in non-invasive brain stimulation literature can be numerous, with underlying brain states and protocol differences at the top of the list. Yet, incoherent results from brain-state-dependent stimulation experiments suggest that there are further factors adding to the variance. Hypothesizing that different signal processing pipelines might be partly responsible for heterogeneity; we investigated their effects on brain-state forecasting approaches.Approach.A grid-search was used to determine the fastest and most-accurate combination of preprocessing parameters and phase-forecasting algorithms. The grid-search was applied on a synthetic dataset and validated on electroencephalographic (EEG) data from a healthy (n= 18) and stroke (n= 31) cohort.Main results.Differences in processing pipelines led to different results; the grid-search chosen pipelines significantly increased the accuracy of published forecasting methods. The accuracy achieved in healthy was comparably high in stroke patients.Significance.This systematic offline analysis highlights the importance of the specific EEG processing and forecasting pipelines used for online state-dependent setups where precision in phase prediction is critical. Moreover, successful results in the stroke cohort pave the way to test state-dependent interventional treatment approaches.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Humanos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Algoritmos , Técnicas Estereotáxicas , Estimulação Magnética Transcraniana/métodos
5.
Front Neurol ; 13: 919511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873764

RESUMO

Effective, patient-tailored rehabilitation to restore upper-limb motor function in severely impaired stroke patients is still missing. If suitably combined and administered in a personalized fashion, neurotechnologies offer a large potential to assist rehabilitative therapies to enhance individual treatment effects. AVANCER (clinicaltrials.gov NCT04448483) is a two-center proof-of-concept trial with an individual based cumulative longitudinal intervention design aiming at reducing upper-limb motor impairment in severely affected stroke patients with the help of multiple neurotechnologies. AVANCER will determine feasibility, safety, and effectivity of this innovative intervention. Thirty chronic stroke patients with a Fugl-Meyer assessment of the upper limb (FM-UE) <20 will be recruited at two centers. All patients will undergo the cumulative personalized intervention within two phases: the first uses an EEG-based brain-computer interface to trigger a variety of patient-tailored movements supported by multi-channel functional electrical stimulation in combination with a hand exoskeleton. This phase will be continued until patients do not improve anymore according to a quantitative threshold based on the FM-UE. The second interventional phase will add non-invasive brain stimulation by means of anodal transcranial direct current stimulation to the motor cortex to the initial approach. Each phase will last for a minimum of 11 sessions. Clinical and multimodal assessments are longitudinally acquired, before the first interventional phase, at the switch to the second interventional phase and at the end of the second interventional phase. The primary outcome measure is the 66-point FM-UE, a significant improvement of at least four points is hypothesized and considered clinically relevant. Several clinical and system neuroscience secondary outcome measures are additionally evaluated. AVANCER aims to provide evidence for a safe, effective, personalized, adjuvant treatment for patients with severe upper-extremity impairment for whom to date there is no efficient treatment available.

6.
J Neural Eng ; 19(2)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35366645

RESUMO

Background.Latencies of motor evoked potentials (MEPs) can provide insights into the motor neuronal pathways activated by transcranial magnetic stimulation. Notwithstanding its clinical relevance, accurate, unbiased methods to automatize latency detection are still missing.Objective.We present a novel open-source algorithm suitable for MEP onset/latency detection during resting state that only requires the post-stimulus electromyography signal and exploits the approximation of the first derivative of this signal to find the time point of initial deflection of the MEP.Approach.The algorithm has been benchmarked, using intra-class coefficient (ICC) and effect sizes, to manual detection of latencies done by three researchers independently on a dataset comprising almost 6500 MEP trials from healthy participants (n= 18) and stroke patients (n= 31) acquired during rest. The performance was further compared to currently available automatized methods, some of which created for active contraction protocols. Mainresults.The unstandardized effect size between the human raters and the present method is smaller than the sampling period for both healthy and pathological MEPs. Moreover, the ICC increases when the algorithm is added as a rater.Significance.The present algorithm is comparable to human expert decision and outperforms currently available methods. It provides a promising method for automated MEP latency detection under physiological and pathophysiological conditions.


Assuntos
Potencial Evocado Motor , Acidente Vascular Cerebral , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA