Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cancer Immunol Immunother ; 73(1): 16, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236251

RESUMO

Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding. Multiple studies in mice implicate blockade of LAIR-1:collagen interaction in cancer as a promising therapeutic strategy. Here, we investigated the role of LAIR-1 in anti-tumour responses. We show that although LAIR-1 inhibits activation, proliferation, and cytokine production of mouse T cells in vitro, tumour outgrowth in LAIR-1-deficient mice did not differ from wild type mice in several in vivo tumour models. Furthermore, treatment with NC410, a LAIR-2-Fc fusion protein, did not result in increased tumour clearance in tested immunocompetent mice, which contrasts with previous data in humanized mouse models. This discrepancy may be explained by our finding that NC410 blocks human LAIR-1:collagen interaction more effectively than mouse LAIR-1:collagen interaction. Despite the lack of therapeutic impact of NC410 monotherapy, mice treated with a combination of NC410 and anti-programmed death-ligand 1 did show reduced tumour burden and increased survival. Using LAIR-1-deficient mice, we showed that this effect seemed to be dependent on the presence of LAIR-1. Taken together, our data demonstrate that the absence of LAIR-1 signalling alone is not sufficient to control tumour growth in multiple immunocompetent mouse models. However, combined targeting of LAIR-1 and PD-L1 results in increased tumour control. Thus, additional targeting of the LAIR-1:collagen pathway with NC410 is a promising approach to treating tumours where conventional immunotherapy is ineffective.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Colágeno , Modelos Animais de Doenças , Leucócitos , Ligantes , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
Front Microbiol ; 13: 958785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177472

RESUMO

Metabolomics is a mainstream strategy for investigating microbial metabolism. One emerging application of metabolomics is the systematic quantification of metabolic boundary fluxes - the rates at which metabolites flow into and out of cultured cells. Metabolic boundary fluxes can capture complex metabolic phenotypes in a rapid assay, allow computational models to be built that predict the behavior of cultured organisms, and are an emerging strategy for clinical diagnostics. One advantage of quantifying metabolic boundary fluxes rather than intracellular metabolite levels is that it requires minimal sample processing. Whereas traditional intracellular analyses require a multi-step process involving extraction, centrifugation, and solvent exchange, boundary fluxes can be measured by simply analyzing the soluble components of the culture medium. To further simplify boundary flux analyses, we developed a custom 96-well sampling system-the Microbial Containment Device (MCD)-that allows water-soluble metabolites to diffuse from a microbial culture well into a bacteria-free analytical well via a semi-permeable membrane. The MCD was designed to be compatible with the autosamplers present in commercial liquid chromatography-mass spectrometry systems, allowing metabolic fluxes to be analyzed with minimal sample handling. Herein, we describe the design, evaluation, and performance testing of the MCD relative to traditional culture methods. We illustrate the utility of this platform, by quantifying the unique boundary fluxes of four bacterial species and demonstrate antibiotic-induced perturbations in their metabolic activity. We propose the use of the MCD for enabling single-step metabolomics sample preparation for microbial identification, antimicrobial susceptibility testing, and other metabolic boundary flux applications where traditional sample preparation methods are impractical.

3.
Front Neurosci ; 16: 917197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812241

RESUMO

Inflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is limited such that 5-25% of IBD outpatients are treated with narcotics, with associated morbidity and mortality. IBD patients commonly present with substantial alterations to the microbial community structure within the gastrointestinal tract, known as dysbiosis. The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized by altered bowel habits and abdominal pain, in the absence of inflammation. An emerging body of literature suggests that the gut microbiome plays an important role in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship with host receptors that are highly expressed on host cell and neurons, suggesting that microbial metabolites play a key role in visceral hypersensitivity. In this review, we will discuss the techniques used to analysis the metabolome, current potential metabolite targets for visceral hypersensitivity, and discuss the current literature that evaluates the role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.

4.
Anal Chem ; 94(25): 8874-8882, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700271

RESUMO

Metabolomics is a mainstream approach for investigating the metabolic underpinnings of complex biological phenomena and is increasingly being applied to large-scale studies involving hundreds or thousands of samples. Although metabolomics methods are robust in smaller-scale studies, they can be challenging to apply to larger cohorts due to the inherent variability of liquid chromatography mass spectrometry (LC-MS). Much of this difficulty results from the time-dependent changes in the LC-MS system, which affects both the qualitative and quantitative performances of the instrument. Herein, we introduce an analytical strategy for addressing this problem in large-scale microbial studies. Our approach quantifies microbial boundary fluxes using two zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) columns that are plumbed to enable offline column equilibration. Using this strategy, we show that over 397 common metabolites can be resolved in 4.5 min per sample and that metabolites can be quantified with a median coefficient of variation of 0.127 across 1100 technical replicates. We illustrate the utility of this strategy via an analysis of 960 strains of Staphylococcus aureus isolated from bloodstream infections. These data capture the diversity of metabolic phenotypes observed in clinical isolates and provide an example of how large-scale investigations can leverage our novel analytical strategy.


Assuntos
Técnicas de Cultura de Células , Metabolômica , Cromatografia Líquida/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos , Metabolômica/métodos
5.
PLoS One ; 17(4): e0267093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443015

RESUMO

Short chain fatty acids (SCFAs; including acetate, propionate, and butyrate) are an important class of biological molecules that play a major role in modulating host-microbiome interactions. Despite significant research into SCFA-mediated biological mechanisms, absolute quantification of these molecules in their native form by liquid chromatography mass spectrometry is challenging due to their relatively poor chromatographic properties. Herein, we introduce SQUAD, an isotope-based strategy for absolute quantification of SCFAs in complex biological samples. SQUAD uses aniline derivatization in conjunction with isotope dilution and analysis by reverse-phase liquid chromatography mass spectrometry. We show that SQUAD enables absolute quantification of biologically relevant SCFAs in complex biological samples with a lower limit of detection of 40 nM and a lower limit of quantification ranging from 160 nM to 310 nM. We observed an intra- and inter-day precision under 3% (relative standard deviation) and errors in intra- and inter-day accuracy under 10%. To demonstrate this quantification strategy, we analyzed SCFAs in the caecal contents of germ free versus conventionally raised specific pathogen free (SPF) mice. We showed that acetate was the most abundant SCFA in both types of mice and was present at 200-fold higher concentration in the SPF mice. We also illustrated the use of our quantification strategy in in vitro microbial cultures from five different species of bacteria grown in Mueller Hinton media. This study illustrates the diverse SCFA production rates across microbial taxa with acetate production serving as one of the key differentiating factors across the species. In summary, we introduce an isotope dilution strategy for absolute quantification of aniline-dativized SCFAs and illustrate the utility of this approach for microbiome research.


Assuntos
Cromatografia de Fase Reversa , Ácidos Graxos Voláteis , Acetatos , Cromatografia Líquida/métodos , Ácidos Graxos Voláteis/análise , Espectrometria de Massas em Tandem/métodos
6.
Brain Behav Immun ; 102: 266-278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259427

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Blood ; 139(20): 3087-3098, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35245360

RESUMO

Glycoprotein VI (GPVI) mediates collagen-induced platelet activation after vascular damage and is an important contributor to the onset of thrombosis, heart attack, and stroke. Animal models of thrombosis have identified GPVI as a promising target for antithrombotic therapy. Although for many years the crystal structure of GPVI has been known, the essential details of its interaction with collagen have remained elusive. Here, we present crystal structures of the GPVI ectodomain bound to triple-helical collagen peptides, which reveal a collagen-binding site across the ß-sheet of the D1 domain. Mutagenesis and binding studies confirm the observed binding site and identify Trp76, Arg38, and Glu40 as essential residues for binding to fibrillar collagens and collagen-related peptides (CRPs). GPVI binds a site on collagen comprising two collagen chains with the core formed by the sequence motif OGPOGP. Potent GPVI-binding peptides from Toolkit-III all contain OGPOGP; weaker binding peptides frequently contain a partial motif varying at either terminus. Alanine-scanning of peptide III-30 also identified two AGPOGP motifs that contribute to GPVI binding, but steric hindrance between GPVI molecules restricts the maximum binding capacity. We further show that no cooperative interactions could occur between two GPVI monomers binding to a stretch of (GPO)5 and that binding of ≥2 GPVI molecules to a fibril-embedded helix requires non-overlapping OGPOGP motifs. Our structure confirms the previously suggested similarity in collagen binding between GPVI and leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) but also indicates significant differences that may be exploited for the development of receptor-specific therapeutics.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombose , Animais , Sítios de Ligação , Plaquetas/metabolismo , Colágeno/metabolismo , Peptídeos/química , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Trombose/metabolismo
8.
Sci Adv ; 8(5): eabm0142, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108057

RESUMO

The mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI). Renal inflammation and the AKI phenotype were attenuated in Dpep1-/- mice or mice pretreated with DPEP1 antagonists, including the LSALT peptide, a nonenzymatic DPEP1 inhibitor. DPEP1 deficiency or inhibition primarily blocked neutrophil adhesion to peritubular capillaries and reduced inflammatory monocyte recruitment to the kidney after IRI. CD44 but not ICAM-1 blockade also decreased neutrophil recruitment to the kidney during IRI and was additive to DPEP1 effects. DPEP1, CD44, and ICAM-1 all contributed to the recruitment of monocyte/macrophages to the kidney following IRI. These results identify DPEP1 as a major leukocyte adhesion receptor in the kidney and potential therapeutic target for AKI.


Assuntos
Injúria Renal Aguda , Dipeptidases/metabolismo , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Animais , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Biomolecules ; 11(7)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34356607

RESUMO

HSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact binding sites of HSP47 on native collagens are not fully defined. To address this, we mapped the HSP47 binding sites on collagens through an ELISA binding assay using collagen toolkits, synthetic collagen peptides covering the entire amino acid sequences of collagen types II and III assembled in triple-helical conformation. Our results showed that HSP47 binds to only a few of the GXR motifs in collagen, with most of the HSP47 binding sites identified located near the N-terminal part of the triple-helical region. Molecular modelling and binding energy calculation indicated that residues flanking the key Arg in the collagen sequence also play an important role in defining the high-affinity HSP47 binding site of collagen. Based on this binding mode of HSP47 to collagen, virtual screening targeting both the Arg binding site and its neighboring area on the HSP47 surface, and a subsequent bioassay, we identified two novel compounds with blocking activity towards HSP47 binding of collagen. Overall, our study revealed the native HSP47 binding sites on collagen and provided novel information for the design of small-molecule inhibitors of HSP47.


Assuntos
Colágeno/química , Proteínas de Choque Térmico HSP47/antagonistas & inibidores , Proteínas de Choque Térmico HSP47/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Humanos
10.
J Thromb Haemost ; 19(2): 547-561, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179420

RESUMO

BACKGROUND: Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo. OBJECTIVES: To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion. METHODS: Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function. Collagen Toolkit peptides, and other triple-helical collagen peptides, were used to identify multimerin 1 binding motifs and their contribution to platelet adhesion. RESULTS: MMRN1 bound to conserved GPAGPOGPX sequences in collagens I, II, and III (including GPAGPOGPI, GPAGPOGPV, and GPAGPOGPQ) that enhanced activated human platelet adhesion to collagen synergistically with other triple-helical collagen peptides (P < .05). Mmrn1-/- and Mmrn1+/- mice were viable and fertile, with complete and partial platelet Mmrn1 deficiency, respectively. Relative to wild-type mice, Mmrn1-/- and Mmrn1+/- mice did not have overt bleeding, increased median bleeding times, or increased wound blood loss (P ≥ .07); however, they both showed significantly impaired platelet adhesion and thrombus formation in the ferric chloride injury model (P ≤ .0003). Mmrn1-/- platelets had impaired adhesion to GPAGPOGPX peptides and fibrillar collagen (P ≤ .03) and formed smaller aggregates than wild-type platelets when captured onto collagen, triple-helical collagen mimetic peptides, von Willebrand factor, or fibrinogen (P ≤ .008), despite preserved, low shear, and high shear aggregation responses. CONCLUSIONS: Multimerin 1 supports platelet adhesion and thrombus formation and binds to highly conserved, GPAGPOGPX motifs in fibrillar collagens that synergistically enhance platelet adhesion.


Assuntos
Proteínas Sanguíneas , Adesividade Plaquetária , Animais , Plaquetas , Colágenos Fibrilares , Camundongos , Fator de von Willebrand
11.
Cell Mol Gastroenterol Hepatol ; 10(2): 225-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289500

RESUMO

BACKGROUND & AIMS: Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS: Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS: Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS: The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.


Assuntos
Colite Ulcerativa/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Dor Visceral/imunologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/microbiologia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Nociceptividade , Nociceptores/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/metabolismo , Dor Visceral/microbiologia
12.
Sci Rep ; 9(1): 18785, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827179

RESUMO

Matrix metalloproteinase-3 (MMP-3) participates in normal extracellular matrix turnover during embryonic development, organ morphogenesis and wound healing, and in tissue-destruction associated with aneurysm, cancer, arthritis and heart failure. Despite its inability to cleave triple-helical collagens, MMP-3 can still bind to them, but the mechanism, location and role of binding are not known. We used the Collagen Toolkits, libraries of triple-helical peptides that embrace the entire helical domains of collagens II and III, to map MMP-3 interaction sites. The enzyme recognises five sites on collagen II and three sites on collagen III. They share a glycine-phenylalanine-hydroxyproline/alanine (GFO/A) motif that is recognised by the enzyme in a context-dependent manner. Neither MMP-3 zymogen (proMMP-3) nor the individual catalytic (Cat) and hemopexin (Hpx) domains of MMP-3 interact with the peptides, revealing cooperative binding of both domains to the triple helix. The Toolkit binding data combined with molecular modelling enabled us to deduce the putative collagen-binding mode of MMP-3, where all three collagen chains make contacts with the enzyme in the valley running across both Cat and Hpx domains. The observed binding pattern casts light on how MMP-3 could regulate collagen turnover and compete with various collagen-binding proteins regulating cell adhesion and proliferation.


Assuntos
Colágeno/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Colágeno/química , Humanos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína
13.
Front Immunol ; 10: 3107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010146

RESUMO

Early life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE. However, whether this inhibition is dependent solely on certain microbial species, or is an additive effect of microbial richness, remains to be determined. Here we report that mice colonized with a combination of bacterial species with specific characteristics is required to inhibit IgE levels. These defined characteristics include the presence in early life, acetate production and immunogenicity reflected by induction of IgA. Suppression of IgE did not correlate with production of the short chain fatty acids propionate and butyrate, or induction of peripherally induced Tregs in mucosal tissues. Thus, inhibition of IgE induction can be mediated by specific microbes and their associated metabolic pathways and immunogenic properties.


Assuntos
Ácidos Graxos Voláteis/imunologia , Microbioma Gastrointestinal/imunologia , Imunoglobulina E/imunologia , Mucosa Intestinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Imunoglobulina A/imunologia , Mucosa Intestinal/microbiologia , Camundongos
15.
Sci Rep ; 8(1): 13809, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218106

RESUMO

Fibrillar collagens have mechanical and biological roles, providing tissues with both tensile strength and cell binding sites which allow molecular interactions with cell-surface receptors such as integrins. A key question is: how do collagens allow tissue flexibility whilst maintaining well-defined ligand binding sites? Here we show that proline residues in collagen glycine-proline-hydroxyproline (Gly-Pro-Hyp) triplets provide local conformational flexibility, which in turn confers well-defined, low energy molecular compression-extension and bending, by employing two-dimensional 13C-13C correlation NMR spectroscopy on 13C-labelled intact ex vivo bone and in vitro osteoblast extracellular matrix. We also find that the positions of Gly-Pro-Hyp triplets are highly conserved between animal species, and are spatially clustered in the currently-accepted model of molecular ordering in collagen type I fibrils. We propose that the Gly-Pro-Hyp triplets in fibrillar collagens provide fibril "expansion joints" to maintain molecular ordering within the fibril, thereby preserving the structural integrity of ligand binding sites.


Assuntos
Colágeno/química , Colágeno/metabolismo , Prolina/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Feminino , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/fisiologia , Glicina/química , Hidroxiprolina/química , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Peptídeos/química , Prolina/fisiologia , Conformação Proteica , Ovinos
16.
Biochem Pharmacol ; 148: 288-297, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29309758

RESUMO

Pharmacological inhibition of platelet collagen interaction is a promising therapeutic strategy to treat intra-vascular thrombosis. S007-867 is a novel synthetic inhibitor of collagen-induced platelet aggregation. It has shown better antithrombotic protection than aspirin and clopidogrel with minimal bleeding tendency in mice. The present study is aimed to systematically investigate the antithrombotic efficacy of S007-867 in comparison to aspirin and clopidogrel in vivo and to delineate its mechanism of action in vitro. Aspirin, clopidogrel, and S007-867 significantly reduced thrombus weight in arterio-venous (AV) shunt model in rats. In mice, following ferric chloride induced thrombosis in either carotid or mesenteric artery; S007-867 significantly prolonged the vessel occlusion time (1.2-fold) and maintained a sustained blood flow velocity for >30 min. Comparatively, clopidogrel showed significant prolongation in TTO (1.3-fold) while aspirin remained ineffective. Both S007-867 and aspirin did not alter bleeding time in either kidney or spleen injury models, and thus maintained hemostasis, while clopidogrel showed significant increase in spleen bleeding time (1.7-fold). The coagulation parameters namely thrombin time, prothrombin time or activated partial thromboplastin time remained unaffected even at high concentration of S007-867 (300 µM), thus implying its antithrombotic effect to be primarily platelet mediated. S007-867 significantly inhibited collagen-mediated platelet adhesion and aggregation in mice ex-vivo. Moreover, when blood was perfused over a highly thrombogenic combination of collagen mimicking peptides like CRP-GFOGER-VWF-III, S007-867 significantly reduced total thrombus volume or ZV50 (53.4 ±â€¯5.7%). Mechanistically, S007-867 (10-300 µM) inhibited collagen-induced ATP release, thromboxane A2 (TxA2) generation, intra-platelet [Ca+2] flux and global tyrosine phosphorylation including PLCγ2. Collectively the present study highlights that S007-867 is a novel synthetic inhibitor of collagen induced platelet activation, that effectively maintains blood flow velocity and delays vascular occlusion. It inhibits thrombogenesis without compromising hemostasis. Therefore, S007-867 may be further developed for the treatment of thrombotic disorders in clinical settings.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fibrinolíticos/farmacologia , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Trombose/tratamento farmacológico , Animais , Aspirina/farmacologia , Cloretos/toxicidade , Clopidogrel/farmacologia , Relação Dose-Resposta a Droga , Compostos Férricos/toxicidade , Fibrinolíticos/administração & dosagem , Masculino , Camundongos , Piperidinas/administração & dosagem , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Pirrolidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
17.
Thromb Haemost ; 117(8): 1588-1600, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28536721

RESUMO

The platelet receptors glycoprotein (Gp)VI, integrin α2ß1 and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca2+ ([Ca2+]i) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca2+]i measurements using confocal imaging. All three collagen receptors coupled to [Ca2+]i signals, but these varied in amplitude and temporal pattern alongside variable integrin activation. GpVI engagement produced large, sustained [Ca2+]i signals leading to real-time increases in integrins α2ß1- and αIIbß3-mediated platelet adhesion. αIIbß3-dependent platelet aggregation was dependent on P2Y12 signalling. Co-engagement of α2ß1 and GpIb/V/IX generated transient [Ca2+]i spikes and low amplitude [Ca2+]i responses that potentiated GpVI-dependent [Ca2+]i signalling. Therefore α2ß1, GpIb/V/IX and GpVI synergise to generate [Ca2+]i signals that regulate platelet behaviour and thrombus formation. Antagonism of secondary signalling pathways reveals distinct, separate roles for αIIbß3 in stable platelet adhesion and aggregation.


Assuntos
Plaquetas/metabolismo , Sinalização do Cálcio , Hemorreologia , Integrina alfa2beta1/metabolismo , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Colágeno/farmacologia , Humanos , Integrina alfa2beta1/agonistas , Microscopia Confocal , Peptídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/agonistas , Fatores de Tempo
18.
Matrix Biol ; 63: 106-116, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28215822

RESUMO

The small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~2.2Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs. Their overall fold is similar to that of the prototypical SLRP, decorin, but unlike decorin neither fibromodulin nor chondroadherin forms a stable dimer. A previously identified binding site for integrin α2ß1 maps to an α-helix in the C-terminal cap region of chondroadherin. Interrogation of the Collagen Toolkits revealed a unique binding site for chondroadherin in collagen II, and no binding to collagen III. A triple-helical peptide containing the sequence GAOGPSGFQGLOGPOGPO (O is hydroxyproline) forms a stable complex with chondroadherin in solution. In fibrillar collagen I and II, this sequence is aligned with the collagen cross-linking site KGHR, suggesting a role for chondroadherin in cross-linking.


Assuntos
Proteínas da Matriz Extracelular/química , Fibromodulina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Cistina/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Soluções
19.
Matrix Biol ; 59: 80-94, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27569273

RESUMO

The collagen-binding integrins recognise collagen through their inserted (I) domain, where co-ordination of a Mg2+ ion in the metal ion-dependent site is reorganised by ligation by a collagen glutamate residue found in specific collagen hexapeptide motifs. Here we show that GROGER, found in the N-terminal domain of collagens I and III, is only weakly recognised by α10ß1, an important collagen receptor on chondrocytes, contrasting with the other collagen-binding integrins. Alignment of I domain sequence and molecular modelling revealed a clash between a unique arginine residue (R215) in α10ß1 and the positively-charged GROGER. Replacement of R215 with glutamine restored binding. Substituting arginine at the equivalent locus (Q214) in integrins α1 and α2 I domains impaired their binding to GROGER. Collagen II, abundant in cartilage, lacks GROGER. GRSGET is uniquely expressed in the C-terminus of collagen II, but this motif is similarly not recognised by α10ß1. These data suggest an evolutionary imperative to maintain accessibility of the terminal domains of collagen II in tissues such as cartilage, perhaps during endochondral ossification, where α10ß1 is the main collagen-binding integrin.


Assuntos
Colágeno Tipo II/química , Cadeias alfa de Integrinas/química , Magnésio/química , Peptídeos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cátions Bivalentes , Linhagem Celular , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Ácido Edético/química , Expressão Gênica , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Camundongos , Modelos Moleculares , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática
20.
Thromb Haemost ; 116(1): 87-95, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27052467

RESUMO

Multimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding. Modified ELISA and surface plasmon resonance were used to study the structural features of VWF that support MMRN1 binding, and determine the affinities for VWF-MMRN1 binding. High shear microfluidic platelet adhesion assays determined the functional consequences for VWF-MMRN1 binding. VWF binding to MMRN1 was enhanced by shear exposure and ristocetin, and required VWF A1A2A3 region, specifically the A1 and A3 domains. VWF A1A2A3 bound to MMRN1 with a physiologically relevant binding affinity (KD: 2.0 ± 0.4 nM), whereas the individual VWF A1 (KD: 39.3 ± 7.7 nM) and A3 domains (KD: 229 ± 114 nM) bound to MMRN1 with lower affinities. VWF A1A2A3 was also sufficient to support the adhesion of resting platelets to MMRN1 at high shear, by a mechanism dependent on VWF-GPIbα binding. Our study provides new information on the molecular basis of MMRN1 binding to VWF, and its role in supporting platelet adhesion at high shear. We propose that at sites of vessel injury, MMRN1 that is released following activation of platelets and endothelial cells, binds to VWF A1A2A3 region to support platelet adhesion at arterial shear rates.


Assuntos
Proteínas Sanguíneas/metabolismo , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Técnicas Analíticas Microfluídicas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ativação Plaquetária , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Ristocetina/farmacologia , Ressonância de Plasmônio de Superfície , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA