Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 18(1): 76-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665709

RESUMO

Electrophysiological (EP) mapping catheters are medical equipment, which are widely used to diagnose and treat atrial fibrillation. The electrophysiology signals are sensed by the catheter's electrodes, for which a large electrode count becomes more and more essential because of the demand for a higher local resolution. A drawback of the large electrode count is the effort to pass through and to integrate the wires inside the catheter shaft. To overcome with this issue, this article describes the realization of an EP ASIC, which is placed close to the 97 electrodes and to perform an in-tip digitization. Thanks to an integrated optical link, only a single fiber is required to connect the catheter tip to an externally located electro-optical unit and thus shrinking the shaft volume to a minimum. The fiber is used to guide light from the electro-optical unit to the catheter tip and illuminate a blue LED, which is located close to the EP ASIC and acts as a photovoltaic cell. The EP ASIC is designed to use the LED as power source and a data transceiver while performing signal conditioning and digitization of the EP signals at the same time. The EP signals are captured with the ASIC's multi-channel read-out circuit consisting of 97 fully differential preamplifiers and additional filter stages. A switch network sequentially selects one single channel for further amplification and digitization of the EP signal. The read-out circuit is designed to process signals in the range of 500 µVpp to 20 mVpp with a bandwidth of 5 Hz to 100 Hz.


Assuntos
Arritmias Cardíacas , Catéteres , Humanos , Eletrodos , Desenho de Equipamento
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1336-1340, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891531

RESUMO

This paper describes a realization of an electrophysiology (EP) catheter with 96 electrodes which requires no electrical wiring to the outside by relying on an optical link for both power supply and data communication. The catheter tip is constructed from a liquid crystal polymer (LCP) material. It features 96 gold electrodes, which are uniformly arranged along an expandable basket. An integrated ASIC amplifies, filters and digitizes the EP signals and establishes communication to a data processing unit outside the patient's body. The optical interface consists of a conventional multi-mode fiber and a single blue LED inside the catheter. The external unit used to generate optical power, establish communication and perform data post-processing comprises a laser module, optics, and electrical components. The catheter is designed to capture EP signals in the range of 600 µVpp to 20 mVpp in a frequency range between 8 Hz and 120 Hz.


Assuntos
Catéteres , Fontes de Energia Elétrica , Eletrofisiologia Cardíaca , Eletrodos , Humanos
3.
J Neural Eng ; 18(4)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34010815

RESUMO

Objective.Brain functions such as perception, motor control, learning, and memory arise from the coordinated activity of neuronal assemblies distributed across multiple brain regions. While major progress has been made in understanding the function of individual neurons, circuit interactions remain poorly understood. A fundamental obstacle to deciphering circuit interactions is the limited availability of research tools to observe and manipulate the activity of large, distributed neuronal populations in humans. Here we describe the development, validation, and dissemination of flexible, high-resolution, thin-film (TF) electrodes for recording neural activity in animals and humans.Approach.We leveraged standard flexible printed-circuit manufacturing processes to build high-resolution TF electrode arrays. We used biocompatible materials to form the substrate (liquid crystal polymer; LCP), metals (Au, PtIr, and Pd), molding (medical-grade silicone), and 3D-printed housing (nylon). We designed a custom, miniaturized, digitizing headstage to reduce the number of cables required to connect to the acquisition system and reduce the distance between the electrodes and the amplifiers. A custom mechanical system enabled the electrodes and headstages to be pre-assembled prior to sterilization, minimizing the setup time required in the operating room. PtIr electrode coatings lowered impedance and enabled stimulation. High-volume, commercial manufacturing enables cost-effective production of LCP-TF electrodes in large quantities.Main Results. Our LCP-TF arrays achieve 25× higher electrode density, 20× higher channel count, and 11× reduced stiffness than conventional clinical electrodes. We validated our LCP-TF electrodes in multiple human intraoperative recording sessions and have disseminated this technology to >10 research groups. Using these arrays, we have observed high-frequency neural activity with sub-millimeter resolution.Significance.Our LCP-TF electrodes will advance human neuroscience research and improve clinical care by enabling broad access to transformative, high-resolution electrode arrays.


Assuntos
Materiais Biocompatíveis , Encéfalo , Animais , Impedância Elétrica , Eletrodos , Eletrodos Implantados , Humanos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA