Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1304: 342536, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637048

RESUMO

Honeys of particular botanical origins can be associated with premium market prices, a trait which also makes them susceptible to fraud. Currently available authenticity testing methods for botanical classification of honeys are either time-consuming or only target a few "known" types of markers. Simple and effective methods are therefore needed to monitor and guarantee the authenticity of honey. In this study, a 'dilute-and-shoot' approach using liquid chromatography (LC) coupled to quadrupole time-of-flight-mass spectrometry (QTOF-MS) was applied to the non-targeted fingerprinting of honeys of different floral origin (buckwheat, clover and blueberry). This work investigated for the first time the impact of different instrumental conditions such as the column type, the mobile phase composition, the chromatographic gradient, and the MS fragmentor voltage (in-source collision-induced dissociation) on the botanical classification of honeys as well as the data quality. Results indicated that the data sets obtained for the various LC-QTOF-MS conditions tested were all suitable to discriminate the three honeys of different floral origin regardless of the mathematical model applied (random forest, partial least squares-discriminant analysis, soft independent modelling by class analogy and linear discriminant analysis). The present study investigated different LC-QTOF-MS conditions in a "dilute and shoot" method for honey analysis, in order to establish a relatively fast, simple and reliable analytical method to record the chemical fingerprints of honey. This approach is suitable for marker discovery and will be used for the future development of advanced predictive models for honey botanical origin.


Assuntos
Mel , Mel/análise , Espectrometria de Massas , Análise Discriminante , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida
2.
J Sci Food Agric ; 104(3): 1768-1776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872647

RESUMO

BACKGROUND: Food adulteration is a global concern, whether it takes place intentionally or incidentally. In Canada, maple syrup is susceptible to being adulterated with cheaper syrups such as corn, beet, cane syrups, and many more due to its high price and economic importance. RESULTS: In this study, the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was investigated to detect maple syrups adulterated with 15 different sugar syrups at different concentration levels. The spectra were collected in the range of 4000-650 cm-1 in the absorbance unit. These spectra were used to build six libraries and three models. A method that is capable of performing a qualitative library search using a similarity search, which is based on the first derivative correlation search algorithm, was developed. This method was further evaluated and proved to be able to capture adulterated and reject non-adulterated maple syrups, belonging to the color grades golden and amber maple syrups, with an accuracy of 93.9% and 92.3%, respectively. However, for the maple syrup belonging to the dark color grade, this method demonstrated low specificity of 33.3%, and for this reason it was only able to adequately detect adulterated samples from the non-adulterated ones with an accuracy of 81.4%. CONCLUSION: This simple and rapid method has strong potential for implementation in different stages of the maple syrup supply chain for early adulteration detection, particularly for golden and amber samples. Further evaluation and improvements are required for the dark color grade. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acer , Mel , Espectroscopia de Infravermelho com Transformada de Fourier , Acer/química , Âmbar , Carboidratos , Mel/análise , Contaminação de Alimentos/análise
3.
Chemosphere ; 341: 139908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634584

RESUMO

Flame retardants (FRs) are often added to commercial products to achieve flammability resistance, but they are not chemically bonded to the materials, so, they can be easily released into the environment during the production and disposal processes. When honeybees travel to collect nectar during the pollination process, they are prone to be contaminated by chemicals in the air. Therefore, honey contamination has been proposed as an indicator of the pollution status in a particular region. To date, the occurrence of flame retardants in urban honey has yet to be explored. In this study, a direct injection method was used, coupled with LC-QTOF-MS, to analyze honey samples. This method was applied to urban (n = 100) and rural (n = 100) honey samples from the Quebec province (Canada), and the levels of flame retardants in urban and rural honey samples were not significantly different. In the targeted approach, two of the target FRs, tris(2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP), were detected and confirmed at an average trace concentration (<1 ng mL-1). Additionally, a non-targeted screening workflow with an in-house-built library was developed and validated to screen for flame retardants in honey. Tris (2-chloropropyl) phosphate (TCIPP) was identified in honey using the non-targeted screening workflow and confirmed using a pure analytical standard, but there are other compounds detected in the non-targeted analysis that have yet to be validated. This study was the first to report FR compounds based on a direct injection method, coupled with a non-targeted screening workflow, at a trace level in a honey matrix. It also showed that a non-targeted workflow was effective to detect and identify unknown compounds present in the honey sample; hence, this provided a novel angle for the occurrence of FRs in air, with honey as a bio-indicator.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Mel , Animais , Exposição Ambiental/análise , Compostos Organofosforados/análise , Retardadores de Chama/análise , Mel/análise , Poeira/análise , Organofosfatos/análise , Monitoramento Ambiental , Fosfatos/análise , Poluição do Ar em Ambientes Fechados/análise , Éteres Difenil Halogenados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA