Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38742659

RESUMO

BACKGROUND: Daily physical activity patterns differ by Alzheimer's disease (AD) status and might signal cognitive risk. It is critical to understand whether patterns are disrupted early in the AD pathological process. Yet, whether established AD risk markers (ß-amyloid (Aß) or APOE-ε4) are associated with differences in objectively measured activity patterns among cognitively unimpaired older adults is unclear. METHODS: Wrist accelerometry, brain Aß (+/-), and APOE-ε4 genotype were collected in 106 (Aß) and 472 (APOE-ε4) participants [mean age 76 (SD: 8.5) or 75 (SD: 9.2) years, 60% or 58% women] in the BLSA. Adjusted linear and function-on-scalar regression models examined whether Aß or APOE-ε4 status was cross-sectionally associated with activity patterns (amount, variability, or fragmentation) overall and by time-of-day, respectively. Differences in activity patterns by combinations of Aß and APOE-ε4 status were descriptively examined (n=105). RESULTS: There were no differences in any activity pattern by Aß or APOE-ε4 status overall. Aß+ was associated with lower total amount and lower within-day variability of physical activity overnight and early evening, and APOE-ε4 carriers had higher total amount of activity in the evening and lower within-day variability of activity in the morning. Diurnal curves of activity were blunted among those with Aß+ regardless of APOE-ε4 status, but only when including older adults with MCI/dementia. CONCLUSIONS: Aß+ in cognitively unimpaired older adults might manifest as lower amount and variability of daily physical activity, particularly during overnight/evening hours. Future research is needed to examine changes in activity patterns in larger samples and by other AD biomarkers.

2.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353984

RESUMO

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Assuntos
Envelhecimento , Encéfalo , Humanos , Idoso , Feminino , Masculino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Envelhecimento/genética , Envelhecimento/fisiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos de Coortes , Aprendizado Profundo
3.
Sleep ; 47(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38381532

RESUMO

STUDY OBJECTIVES: To compare sleep and 24-hour rest/activity rhythms (RARs) between cognitively normal older adults who are ß-amyloid-positive (Aß+) or Aß- and replicate a novel time-of-day-specific difference between these groups identified in a previous exploratory study. METHODS: We studied 82 cognitively normal participants from the Baltimore Longitudinal Study of Aging (aged 75.7 ±â€…8.5 years, 55% female, 76% white) with wrist actigraphy data and Aß+ versus Aß- status measured by [11C] Pittsburgh compound B positron emission tomography. RARs were calculated using epoch-level activity count data from actigraphy. We used novel, data-driven function-on-scalar regression analyses and standard RAR metrics to cross-sectionally compare RARs between 25 Aß+ and 57 Aß- participants. RESULTS: Compared to Aß- participants, Aß+ participants had higher mean activity from 1:00 p.m. to 3:30 p.m. when using less conservative pointwise confidence intervals (CIs) and from 1:30 p.m. to 2:30 p.m. using more conservative, simultaneous CIs. Furthermore, Aß+ participants had higher day-to-day variability in activity from 9:00 a.m. to 11:30 a.m. and lower variability from 1:30 p.m. to 4:00 p.m. and 7:30 p.m. to 10:30 p.m. according to pointwise CIs, and lower variability from 8:30 p.m. to 10:00 p.m. using simultaneous CIs. There were no Aß-related differences in standard sleep or RAR metrics. CONCLUSIONS: Findings suggest Aß+ older adults have higher, more stable day-to-day afternoon/evening activity than Aß- older adults, potentially reflecting circadian dysfunction. Studies are needed to replicate our findings and determine whether these or other time-of-day-specific RAR features have utility as markers of preclinical Aß deposition and if they predict clinical dementia and agitation in the afternoon/evening (i.e. "sundowning").


Assuntos
Actigrafia , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Actigrafia/estatística & dados numéricos , Actigrafia/métodos , Tomografia por Emissão de Pósitrons/métodos , Idoso de 80 Anos ou mais , Estudos Longitudinais , Descanso/fisiologia , Compostos de Anilina , Sono/fisiologia , Biomarcadores/metabolismo , Biomarcadores/análise , Ritmo Circadiano/fisiologia , Tiazóis , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
4.
Ann Neurol ; 95(2): 260-273, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37801487

RESUMO

OBJECTIVE: Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration. METHODS: In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-ß [Aß]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aß and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk. RESULTS: Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aß42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aß42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease. INTERPRETATION: Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Nefropatias , Doenças Neurodegenerativas , Adulto , Humanos , Doença de Alzheimer/diagnóstico por imagem , Proteômica , Peptídeos beta-Amiloides , Biomarcadores , Proteínas tau
5.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127979

RESUMO

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Mapeamento Encefálico/métodos , Genômica , Neoplasias Encefálicas/patologia
6.
Alzheimers Dement (Amst) ; 15(4): e12468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780863

RESUMO

Introduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging (Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], Vanderbilt Memory & Aging Project [VMAP]) were free-water corrected and harmonized. This dataset included 1723 participants (age at baseline: 72.8 ± 8.87 years, 49.5% male) and 4605 imaging sessions (follow-up time: 2.97 ± 2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42 ± 1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. Results: While we found a global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. Conclusions: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. HIGHLIGHTS: Longitudinal data were free-water corrected and harmonized.Global effects of white matter decline were seen in normal and abnormal aging.The free-water metric was most vulnerable to abnormal aging.Cingulum free-water was the most vulnerable to abnormal aging.

7.
Comput Med Imaging Graph ; 109: 102285, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657151

RESUMO

The lack of standardization and consistency of acquisition is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations in the acquired images due to differences in hardware and acquisition parameters. In recent years, image synthesis-based MR harmonization with disentanglement has been proposed to compensate for the undesired contrast variations. The general idea is to disentangle anatomy and contrast information from MR images to achieve cross-site harmonization. Despite the success of existing methods, we argue that major improvements can be made from three aspects. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable, since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both T1-weighted and T2-weighted images), limiting their applicability. Lastly, existing methods are generally sensitive to imaging artifacts. In this paper, we present Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), a novel approach to address these three issues. HACA3 incorporates an anatomy fusion module that accounts for the inherent anatomical differences between MR contrasts. Furthermore, HACA3 can be trained and applied to any combination of MR contrasts and is robust to imaging artifacts. HACA3 is developed and evaluated on diverse MR datasets acquired from 21 sites with varying field strengths, scanner platforms, and acquisition protocols. Experiments show that HACA3 achieves state-of-the-art harmonization performance under multiple image quality metrics. We also demonstrate the versatility and potential clinical impact of HACA3 on downstream tasks including white matter lesion segmentation for people with multiple sclerosis and longitudinal volumetric analyses for normal aging subjects. Code is available at https://github.com/lianruizuo/haca3.


Assuntos
Encéfalo , Substância Branca , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Envelhecimento , Processamento de Imagem Assistida por Computador/métodos
8.
Alzheimers Dement ; 19(10): 4436-4445, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37530130

RESUMO

INTRODUCTION: Mitochondrial dysfunction is implicated in the pathophysiology of many chronic diseases. Whether it is related to cognitive impairment and pathological markers is unknown. METHODS: We examined the associations of in vivo skeletal muscle mitochondrial function (post-exercise recovery rate of phosphocreatine [kPCr] via magnetic resonance [MR] spectroscopy with future mild cognitive impairment (MCI) or dementia, and with positron emission tomography (PET) and blood biomarkers of Alzheimer's disease [AD] and neurodegeneration (i.e., Pittsburgh Compound-B [PiB] distribution volume ratio [DVR] for amyloid beta [Aß], flortaucipir (FTP) standardized uptake value ratio [SUVR] for tau, Aß42 /40 ratio, phosphorylated tau 181 [p-tau181], neurofilament light chain [NfL], and glial fibrillary acidic protein [GFAP]). RESULTS: After covariate adjustment, each standard deviation (SD) higher kPCr level was associated with 52% lower hazards of developing MCI/dementia, and with 59% lower odds of being PiB positive with specific associations in DVR of frontal, parietal, and temporal regions, and cingulate cortex and pallidum. Higher kPCr level was also associated with lower plasma GFAP. DISCUSSION: In aging, mitochondrial dysfunction may play a vital role in AD pathological changes and neuroinflammation. Highlights Higher in vivo mitochondrial function is related to lower risk of mild cognitive impairment (MCI)/dementia. Higher in vivo mitochondrial function is related to lower amyloid tracer uptake. Higher in vivo mitochondrial function is related to lower plasma neuroinflammation. Mitochondrial dysfunction may play a key role in Alzheimer's disease (AD) and neurodegeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Disfunção Cognitiva/metabolismo , Proteínas tau/metabolismo , Biomarcadores , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Tomografia por Emissão de Pósitrons/métodos
9.
Alzheimers Dement (Amst) ; 15(3): e12436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424963

RESUMO

INTRODUCTION: It is necessary to accurately account for systematic differences due to variability in scanners, radiotracers, and acquisition protocols in multisite studies combining amyloid imaging data. METHODS: We propose Probabilistic Estimation for Across-batch Compatibility Enhancement (PEACE), a fully Bayesian multimodal extension of the widely used ComBat harmonization model, and we apply it to harmonize regional amyloid positron emission tomography data from two scanners. RESULTS: Simulations show that PEACE recovers true harmonized values better than ComBat, even for unimodal data. PEACE harmonization of multiscanner regional amyloid imaging data yields results that agree better with longitudinal data compared to ComBat, without removing the known biological effects of age or apolipoprotein E genotype. DISCUSSION: PEACE outperforms ComBat in both unimodal and bimodal contexts, is applicable to multisite amyloid imaging data, and holds promise for the harmonization of other neuroimaging data over ComBat. HIGHLIGHTS: We introduce PEACE, a fully Bayesian multimodal extension of ComBat harmonization.Simulations show that PEACE recovers true harmonized values better than ComBat.PEACE accurately harmonizes multiscanner regional amyloid imaging data.

10.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292885

RESUMO

INTRODUCTION: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. METHODS: Diffusion MRI data from several well-established longitudinal cohorts of aging [Alzheimer's Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study of Aging (BLSA), Vanderbilt Memory & Aging Project (VMAP)] was free-water corrected and harmonized. This dataset included 1,723 participants (age at baseline: 72.8±8.87 years, 49.5% male) and 4,605 imaging sessions (follow-up time: 2.97±2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42±1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. RESULTS: While we found global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. CONCLUSIONS: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. HIGHLIGHTS: Longitudinal data was free-water corrected and harmonizedGlobal effects of white matter decline were seen in normal and abnormal agingThe free-water metric was most vulnerable to abnormal agingCingulum free-water was the most vulnerable to abnormal aging.

11.
Alzheimers Dement (Amst) ; 15(2): e12407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139098

RESUMO

Introduction: Beta-amyloid (Aß) plaque deposition is a biomarker of preclinical Alzheimer's disease (AD). Impairments in sensory function are associated with cognitive decline. We sought to investigate the relationship between PET-indicated Aß deposition and sensory impairment. Methods: Using data from 174 participants ≥55 years in the Baltimore Longitudinal Study of Aging, we analyzed associations between sensory impairments and Aß deposition measured by PET and Pittsburgh Compound B (PiB) mean cortical distribution volume ratio (cDVR). Results: The combinations of hearing and proprioceptive impairment and hearing, vision, and proprioceptive impairment, were positively correlated with cDVR (ß = 0.087 and p = 0.036, ß = 0.110 and p = 0.018, respectively). In stratified analyses of PiB+ participants, combinations of two, three, and four sensory impairments (all involving proprioception) were associated with higher cDVR. Discussion: Our findings suggest a relationship between multi-sensory impairment (notably proprioceptive impairment) and Aß deposition, which could reflect sensory impairment as an indicator or potentially a risk factor for Aß deposition.

12.
Alzheimers Dement (Amst) ; 15(2): e12425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213219

RESUMO

Introduction: White matter microstructure may be abnormal along the Alzheimer's disease (AD) continuum. Methods: Diffusion magnetic resonance imaging (dMRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 627), Baltimore Longitudinal Study of Aging (BLSA, n = 684), and Vanderbilt Memory & Aging Project (VMAP, n = 296) cohorts were free-water (FW) corrected and conventional, and FW-corrected microstructural metrics were quantified within 48 white matter tracts. Microstructural values were subsequently harmonized using the Longitudinal ComBat technique and inputted as independent variables to predict diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI], AD). Models were adjusted for age, sex, race/ethnicity, education, apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status. Results: Conventional dMRI metrics were associated globally with diagnostic status; following FW correction, the FW metric itself exhibited global associations with diagnostic status, but intracellular metric associations were diminished. Discussion: White matter microstructure is altered along the AD continuum. FW correction may provide further understanding of the white matter neurodegenerative process in AD. Highlights: Longitudinal ComBat successfully harmonized large-scale diffusion magnetic resonance imaging (dMRI) metrics.Conventional dMRI metrics were globally sensitive to diagnostic status.Free-water (FW) correction mitigated intracellular associations with diagnostic status.The FW metric itself was globally sensitive to diagnostic status. Multivariate conventional and FW-corrected models may provide complementary information.

13.
Alzheimers Dement ; 19(10): 4335-4345, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37216632

RESUMO

INTRODUCTION: Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS: We examined the temporal order of changes in plasma amyloid-ß ratio ( A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios ( p-tau181 / A ß 42 $\text{p-tau181}/\mathrm{A}{\beta}_{42}$ , p-tau231 / A ß 42 $\text{p-tau231}/\mathrm{A}{\beta}_{42}$ ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS: PiB groups exhibited different rates of longitudinal change in A ß 42 / A ß 40 ( ß = 5.41 × 10 - 4 , SE = 1.95 × 10 - 4 , p = 0.0073 ) ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}\ ( {\beta \ = \ 5.41 \times {{10}}^{ - 4},{\rm{\ SE\ }} = \ 1.95 \times {{10}}^{ - 4},\ p\ = \ 0.0073} )$ . Change in brain amyloid correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). The greatest relative decline in A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ (-1%/year) preceded brain amyloid positivity by 41 years (95% CI = [32, 53]). DISCUSSION: Plasma A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time. HIGHLIGHTS Plasma A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ declines over time among PiB- but does not change among PiB+. Phosphorylated-tau to Aß42 ratios increase over time among PiB+ but do not change among PiB-. Rate of change in brain amyloid is correlated with change in GFAP and neurofilament light chain. The greatest decline in A ß 42 / A ß 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may precede brain amyloid positivity by decades.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Tomografia por Emissão de Pósitrons , Biomarcadores , Proteínas tau/metabolismo
14.
Alzheimers Dement ; 19(7): 3098-3107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36720000

RESUMO

INTRODUCTION: The influence of myelination on longitudinal changes in cognitive performance remains unclear. METHODS: For each participant (N = 123), longitudinal cognitive scores were calculated. Myelin content was probed using myelin water fraction (MWF) or longitudinal relaxation rate (R1 ); both are MRI measures sensitive to myelin, with MWF being specific. RESULTS: Lower MWF was associated with steeper declines in executive function (p < .02 in all regions) and lower R1 was associated with steeper declines in verbal fluency (p < .03 in all regions). Additionally, lower R1 was associated with steeper declines in executive function (p < .02 in all regions) and memory (p < .04 in occipital and cerebral white matter) but did not survive Bonferroni correction. DISCUSSION: We demonstrate significant relationships between myelin content and the rates of change in cognitive performance among cognitively normal individuals. These findings highlight the importance of myelin in cognitive functioning and suggest MWF and R1 as imaging biomarkers to predict cognitive changes.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Bainha de Mielina , Cognição , Função Executiva , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo
15.
medRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36711545

RESUMO

INTRODUCTION: Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS: We examined the temporal order of changes in plasma amyloid-ß ratio (Aß 42 /Aß 40 ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios (p-tau181/Aß 42 , p-tau231/Aß 42 ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS: PiB groups exhibited different rates of longitudinal change in Aß 42 /Aß 40 (ß = 5.41 × 10^ -4 , SE = 1.95 × 10 -4 , p = 0.0073). Change in brain amyloid was correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). Greatest relative decline in Aß 42 /Aß 40 (-1%/year) preceded brain amyloid positivity onset by 41 years (95% CI = [32, 53]). DISCUSSION: Plasma Aß 42 /Aß 40 may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time.

16.
medRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234857

RESUMO

Brain aging is a complex process influenced by various lifestyle, environmental, and genetic factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI methods have been instrumental in understanding the neuroanatomical changes that occur during aging in large and diverse populations. However, the multiplicity and mutual overlap of both pathologic processes and affected brain regions make it difficult to precisely characterize the underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a state-of-the art deep representation learning method, Surreal-GAN, and present both methodological advances and extensive experimental results that allow us to elucidate the heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. Five dominant patterns of neurodegeneration were identified and quantified for each individual by their respective (herein referred to as) R-indices. Significant associations between R-indices and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of observed variances. Furthermore, baseline R-indices showed predictive value for disease progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, prognostication, and may inform stratification into clinical trials.

17.
JAMA Netw Open ; 5(9): e2231189, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094503

RESUMO

Importance: Decreased cerebral tissue integrity and cerebral blood flow (CBF) are features of neurodegenerative diseases. Brain tissue maintenance is an energy-demanding process, making it particularly sensitive to hypoperfusion. However, little is known about the association between blood flow and brain microstructural integrity, including in normative aging. Objective: To assess associations between CBF and changes in cerebral tissue integrity in white matter and gray matter brain regions. Design, Setting, and Participants: In this longitudinal cohort study, magnetic resonance imaging was performed on 732 healthy adults from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective longitudinal study (baseline age of 18-30 years) that examined participants up to 8 times during 30 years (1985-1986 to 2015-2016). Cerebral blood flow was measured at baseline (year 25 of the CARDIA study), and changes in diffusion tensor indices of fractional anisotropy (FA) and mean diffusivity (MD), measures of microstructural tissue integrity, were measured at both baseline and after approximately 5 years of follow-up (year 30). Analyses were conducted from November 5, 2020, to January 29, 2022. Main Outcomes and Measures: Automated algorithms and linear mixed-effects statistical models were used to evaluate the associations between CBF at baseline and changes in FA or MD. Results: After exclusion of participants with missing or low-quality data, 654 at baseline (342 women; mean [SD] age, 50.3 [3.5] years) and 433 at follow-up (230 women; mean [SD] age, 55.1 [3.5] years) were scanned for CBF or FA and MD imaging. In the baseline cohort, 247 participants were Black (37.8%) and 394 were White (60.2%); in the follow-up cohort, 156 were Black (36.0%) and 277 were White (64.0%). Cross-sectionally, FA and MD were associated with CBF in most regions evaluated, with lower CBF values associated with lower FA or higher MD values, including the frontal white matter lobes (for CBF and MD: mean [SE] ß = -1.4 [0.5] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and the parietal white matter lobes (for CBF and MD: mean [SE] ß = -2.4 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Lower CBF values at baseline were also significantly associated with steeper regional decreases in FA or increases in MD in most brain regions investigated, including the frontal (for CBF and MD: mean [SE] ß = -1.1 [0.6] × 10-6; for CBF and FA: mean [SE] ß = 2.9 [1.0] × 10-4) and parietal lobes (for CBF and MD: mean [SE] ß = -1.5 [0.7] × 10-6; for CBF and FA: mean [SE] ß = 4.4 [1.1] × 10-4). Conclusions and Relevance: Results of this longitudinal cohort study of the association between CBF and diffusion tensor imaging metrics suggest that blood flow may be significantly associated with brain tissue microstructure. This work may lay the foundation for investigations to clarify the nature of early brain damage in neurodegeneration. Such studies may lead to new neuroimaging biomarkers of brain microstructure and function for disease progression.


Assuntos
Vasos Coronários , Imagem de Tensor de Difusão , Adolescente , Adulto , Circulação Cerebrovascular/fisiologia , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
18.
Brain Commun ; 4(4): fcac193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938073

RESUMO

Amyloid-ß pathology is associated with greater tau pathology and facilitates tau propagation from the medial temporal lobe to the neocortex, where tau is closely associated with local neurodegeneration. The degree of the involvement of amyloid-ß versus existing tau pathology in tau propagation and neurodegeneration has not been fully elucidated in human studies. Careful quantification of these effects can inform the development and timing of therapeutic interventions. We conducted causal mediation analyses to investigate the relative contributions of amyloid-ß and existing tau to tau propagation and neurodegeneration in two longitudinal studies of individuals without dementia: the Baltimore Longitudinal Study of Aging (N = 103, age range 57-96) and the Alzheimer's Disease Neuroimaging Initiative (N = 122, age range 56-92). As proxies of neurodegeneration, we investigated cerebral blood flow, glucose metabolism, and regional volume. We first confirmed that amyloid-ß moderates the association between tau in the entorhinal cortex and in the inferior temporal gyrus, a neocortical region exhibiting early tau pathology (amyloid group × entorhinal tau interaction term ß = 0.488, standard error [SE] = 0.126, P < 0.001 in the Baltimore Longitudinal Study of Aging; ß = 0.619, SE = 0.145, P < 0.001 in the Alzheimer's Disease Neuroimaging Initiative). In causal mediation analyses accounting for this facilitating effect of amyloid, amyloid positivity had a statistically significant direct effect on inferior temporal tau as well as an indirect effect via entorhinal tau (average direct effect =0.47, P < 0.001 and average causal mediation effect =0.44, P = 0.0028 in Baltimore Longitudinal Study of Aging; average direct effect =0.43, P = 0.004 and average causal mediation effect =0.267, P = 0.0088 in Alzheimer's Disease Neuroimaging Initiative). Entorhinal tau mediated up to 48% of the total effect of amyloid on inferior temporal tau. Higher inferior temporal tau was associated with lower colocalized cerebral blood flow, glucose metabolism, and regional volume, whereas amyloid had only an indirect effect on these measures via tau, implying tau as the primary driver of neurodegeneration (amyloid-cerebral blood flow average causal mediation effect =-0.28, P = 0.021 in Baltimore Longitudinal Study of Aging; amyloid-volume average causal mediation effect =-0.24, P < 0.001 in Alzheimer's Disease Neuroimaging Initiative). Our findings suggest targeting amyloid or medial temporal lobe tau might slow down neocortical spread of tau and subsequent neurodegeneration, but a combination therapy may yield better outcomes.

19.
Brain ; 145(11): 4065-4079, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35856240

RESUMO

Alzheimer's disease biomarkers are becoming increasingly important for characterizing the longitudinal course of disease, predicting the timing of clinical and cognitive symptoms, and for recruitment and treatment monitoring in clinical trials. In this work, we develop and evaluate three methods for modelling the longitudinal course of amyloid accumulation in three cohorts using amyloid PET imaging. We then use these novel approaches to investigate factors that influence the timing of amyloid onset and the timing from amyloid onset to impairment onset in the Alzheimer's disease continuum. Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA) and the Wisconsin Registry for Alzheimer's Prevention (WRAP). Amyloid PET was used to assess global amyloid burden. Three methods were evaluated for modelling amyloid accumulation using 10-fold cross-validation and holdout validation where applicable. Estimated amyloid onset age was compared across all three modelling methods and cohorts. Cox regression and accelerated failure time models were used to investigate whether sex, apolipoprotein E genotype and e4 carriage were associated with amyloid onset age in all cohorts. Cox regression was used to investigate whether apolipoprotein E (e4 carriage and e3e3, e3e4, e4e4 genotypes), sex or age of amyloid onset were associated with the time from amyloid onset to impairment onset (global clinical dementia rating ≥1) in a subset of 595 ADNI participants that were not impaired before amyloid onset. Model prediction and estimated amyloid onset age were similar across all three amyloid modelling methods. Sex and apolipoprotein E e4 carriage were not associated with PET-measured amyloid accumulation rates. Apolipoprotein E genotype and e4 carriage, but not sex, were associated with amyloid onset age such that e4 carriers became amyloid positive at an earlier age compared to non-carriers, and greater e4 dosage was associated with an earlier amyloid onset age. In the ADNI, e4 carriage, being female and a later amyloid onset age were all associated with a shorter time from amyloid onset to impairment onset. The risk of impairment onset due to age of amyloid onset was non-linear and accelerated for amyloid onset age >65. These findings demonstrate the feasibility of modelling longitudinal amyloid accumulation to enable individualized estimates of amyloid onset age from amyloid PET imaging. These estimates provide a more direct way to investigate the role of amyloid and other factors that influence the timing of clinical impairment in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Estudos Longitudinais , Apolipoproteína E4/genética , Amiloide , Tomografia por Emissão de Pósitrons/métodos , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides
20.
Brain Commun ; 4(3): fcac117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611306

RESUMO

Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer's disease are valuable for determining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of brain change related to the two processes, including the Spatial Patterns of Atrophy for Recognition of Alzheimer's Disease (SPARE-AD) and of Brain Aging (SPARE-BA) scores investigated herein. However, the substantial overlap between brain regions affected in the two processes confounds measuring them independently. We present a methodology, and associated results, towards disentangling the two. T1-weighted MRI scans of 4054 participants (48-95 years) with Alzheimer's disease, mild cognitive impairment (MCI), or cognitively normal (CN) diagnoses from the Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases (iSTAGING) consortium were analysed. Multiple sets of SPARE scores were investigated, in order to probe imaging signatures of certain clinically or molecularly defined sub-cohorts. First, a subset of clinical Alzheimer's disease patients (n = 718) and age- and sex-matched CN adults (n = 718) were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-AD1 (classification of CN versus Alzheimer's disease) models. Second, analogous groups were selected based on clinical and molecular markers to train SPARE-BA2 and SPARE-AD2 models: amyloid-positive Alzheimer's disease continuum group (n = 718; consisting of amyloid-positive Alzheimer's disease, amyloid-positive MCI, amyloid- and tau-positive CN individuals) and amyloid-negative CN group (n = 718). Finally, the combined group of the Alzheimer's disease continuum and amyloid-negative CN individuals was used to train SPARE-BA3 model, with the intention to estimate brain age regardless of Alzheimer's disease-related brain changes. The disentangled SPARE models, SPARE-AD2 and SPARE-BA3, derived brain patterns that were more specific to the two types of brain changes. The correlation between the SPARE-BA Gap (SPARE-BA minus chronological age) and SPARE-AD was significantly reduced after the decoupling (r = 0.56-0.06). The correlation of disentangled SPARE-AD was non-inferior to amyloid- and tau-related measurements and to the number of APOE ε4 alleles but was lower to Alzheimer's disease-related psychometric test scores, suggesting the contribution of advanced brain ageing to the latter. The disentangled SPARE-BA was consistently less correlated with Alzheimer's disease-related clinical, molecular and genetic variables. By employing conservative molecular diagnoses and introducing Alzheimer's disease continuum cases to the SPARE-BA model training, we achieved more dissociable neuroanatomical biomarkers of typical brain ageing and Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA