Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5780, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852905

RESUMO

Quantum coherence plays an essential role in diverse natural phenomena and technological applications. The unavoidable coupling of the quantum system to an uncontrolled environment incurs dissipation that is often described using the secular approximation. Here we probe the limit of this approximation in the rotational relaxation of molecules due to thermal collisions by using the laser-kicked molecular rotor as a model system. Specifically, rotational coherences in N2O gas (diluted in He) are created by two successive nonresonant short and intense laser pulses and probed by studying the change of amplitude of the rotational alignment echo with the gas density. By interrogating the system at the early stage of its collisional relaxation, we observe a significant variation of the dissipative influence of collisions with the time of appearance of the echo, featuring a decoherence process that is well reproduced by the nonsecular quantum master equation for modeling molecular collisions.

2.
J Chem Phys ; 150(12): 124109, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927888

RESUMO

We present a model for the lowest two potential energy surfaces (PESs) that describe the photoinduced ring-opening reaction of benzopyran taken as a model compound to study the photochromic ring-opening reaction of indolinobenzospiropyran and its evolution toward its open-chain analog. The PESs are expressed in terms of three effective rectilinear coordinates. One corresponds to the direction between the equilibrium geometry in the electronic ground state, referred to as the Franck-Condon geometry, and the minimum of conical intersection (CI), while the other two span the two-dimensional branching space at the CI. The model correctly reproduces the topography of the PESs. The ab initio calculations are performed with the extended multiconfiguration quasidegenerate perturbation theory at second order method. We demonstrate that accounting for electron dynamic correlation drastically changes the global energy landscape since some zwitterionic states become strongly stabilized. Quantum dynamics calculations using this PES model produce an absorption spectrum that matches the experimental one to a good accuracy.

3.
Opt Express ; 26(24): 31839-31849, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650763

RESUMO

We report on the polarization analysis of shortpulse ultraviolet radiation produced by third-harmonic generation in a gas of coherently spinning molecules. A pulse of twisted linear polarization imprints a unidirectional rotational motion to the molecules leading to an orientation of their rotational angular momenta. A second pulse, time-delayed with respect to the first one, circularly polarized in the plane of rotation of the molecules, acts as a driving field for third-harmonic generation. The angular momentum and energy conservation applied to this process foresees the generation of two Doppler-shifted circularly-polarized harmonics of opposite handedness. Our analysis reveals that spinning molecules enable the generation of a well polarized third-harmonic radiation exhibiting a high degree of ellipticity. Tracking the orientation of the latter allows a time-capture of the molecular axis direction from which the average angular velocity of the rotating molecules is inferred. This method provides a user-friendly polarization-based tachometer for measurement of the rotational speed of spinning nonlinear rotors.

4.
Opt Express ; 25(22): 27452-27463, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092218

RESUMO

We demonstrate a polarized all-normal dispersion supercontinuum generated in a birefringent silica microstructured fiber spanning beyond 2.5 µm. To our knowledge, this is the spectra reaching the furthest in mid-infrared ever generated in normal dispersion silica fibers. The generation process was studied experimentally and numerically with 70 fs pump pulses operating at different wavelengths on short propagation distances of 48 mm and 122 mm. The all-normal operation was limited by the zero-dispersion wavelength at 2.56 µm and spectral broadening was stopped by OH absorption peak at 2.72 µm. We identified the asymmetry between propagation in both polarization axes and showed that pumping along a slow fiber axis is beneficial for a higher degree of polarization. Numerical simulations of the generation process conducted by solving the generalized nonlinear Schrödinger equation (NLSE) and coupled NLSEs system showed good agreement with experimental spectra.

5.
J Biomed Opt ; 16(8): 086006, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21895318

RESUMO

Transverse "chemical" interfaces are revealed with a conventional two beam narrowband coherent anti-Stokes Raman scattering microscopy setup in a collinear configuration. The exciting "pump" and "Stokes" beams are focused on the sample in two opposite directions. The subtraction of the two generated anti-Stokes signals gives rise to a signal that is directly proportional to the pure Raman spectrum of the resonant medium. This property is used to highlight an interface between glass and N,N-dimethylformamide (DMF) and recover the pure Raman spectrum of DMF around its 1408 cm(-1) vibrational band.


Assuntos
Microscopia/métodos , Análise Espectral Raman/métodos , Simulação por Computador , Dimetilformamida , Formamidas/química , Processamento de Sinais Assistido por Computador
6.
Opt Lett ; 34(12): 1789-91, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19529704

RESUMO

We study tight focus coherent anti-Stokes Raman scattering (CARS) emission in a microcavity where the active medium is squeezed between two independent planar mirrors. We show strong modifications in the CARS forward and backward far-field radiation patterns. For low-order cavities, we demonstrate that most of the emitted power can be concentrated into a direction perpendicular to the mirrors.

7.
Opt Express ; 12(7): 1377-82, 2004 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-19474959

RESUMO

We present the results of Z-scan studies carried out on fused silica at 1064nm and 532nm with two different nanosecond pulse durations. Such measurements in silica and in the nanosecond regime are possible thanks to a high sensitivity setting up of the Z-scan method and in-situ characterizations of the spatio-temporal parameters of the beam. Besides, with the use of a newly adapted numerical simulation only the calibration errors of the measurement devices are significant. In these conditions, we found a higher value of the nonlinear refractive index than in the femtosecond regime and we show that these values depend on pulse duration, which indicates the contribution of nanosecond mechanisms like electrostriction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA