Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 4): 1171-1183, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108814

RESUMO

Structural modelling of operando pair distribution function (PDF) data of complex functional materials can be highly challenging. To aid the understanding of complex operando PDF data, this article demonstrates a toolbox for PDF analysis. The tools include denoising using principal component analysis together with the structureMining, similarityMapping and nmfMapping apps available through the online service 'PDF in the cloud' (PDFitc, https://pdfitc.org/). The toolbox is used for both ex situ and operando PDF data for 3 nm TiO2-bronze nanocrystals, which function as the active electrode material in a Li-ion battery. The tools enable structural modelling of the ex situ and operando PDF data, revealing two pristine TiO2 phases (bronze and anatase) and two lithiated Li x TiO2 phases (lithiated versions of bronze and anatase), and the phase evolution during galvanostatic cycling is characterized.

2.
J Phys Chem Lett ; 12(8): 2118-2125, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33625860

RESUMO

A low-cost chemical solution deposition technique was employed to prepare YBa2Cu3O7-δ (YBCO) nanocomposite films starting from a colloidal solution containing preformed ZrO2 nanocrystals. As previous publications revealed, an increase in the amount of nanocrystals results in a progressive deterioration of the film properties. The parameters that control this process and their interplay are still unknown in detail. Using definitive screening design (DSD), a design-of-experiments approach, allowed determining which of the multiple growth parameters play a key role for improving the superconducting properties of YBCO nanocomposite films even with a large concentration of nanocrystals. In order to show the potential of DSD, it has been applied for the optimization of two different properties: the critical temperature Tc and the full width at half-maximum of the (005) YBCO reflection. This work shows that DSD is a powerful and efficient method that allows optimizing certain processes with a minimal number of experiments.

3.
Nano Lett ; 19(10): 7411-7417, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525055

RESUMO

1-Octadecene is a widely used solvent for high-temperature nanocrystal synthesis (120-320 °C). Here, we show that 1-octadecene spontaneously polymerizes under these conditions, and the resulting poly(1-octadecene) has a comparable solubility and size to nanocrystals stabilized by hydrophobic ligands. Typical purification procedures (precipitation/redispersion cycles or size exclusion chromatography) fail to separate the poly(1-octadecene) impurity from the nanocrystal product. To avoid formation of poly(1-octadecene), we replace 1-octadecene with saturated, aliphatic solvents. Alternatively, the nanocrystals' native ligands are exchanged for polar ligands, leading to significant solubility differences between nanocrystals and poly(1-octadecene), therefore allowing isolation of pure nanocrystals, free from polymer impurities. These results will help design superior syntheses and improve nanocrystal purity, an important factor in many applications.

4.
Dalton Trans ; 45(30): 12094-102, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27396395

RESUMO

Uniform mixed CaMoO4-CaWO4 micro-/nano-materials have been successfully synthesised by a facile hydrothermal method. The morphology of these upconversion materials could be changed to different shapes and the size could also be decreased from the micro- to nano-scale by varying the type of surfactant used. It was observed that before heat treatment, the materials show relatively weak green light emission under excitation at 975 nm, whereas after heat treatment, the intensity of the upconversion luminescence increases dramatically while the intensity of the red component decreases relatively. By adjusting the molybdate/tungstate ratio, it was found that the samples with a higher molybdate content have stronger luminescence properties. XRD measurements have been done to investigate the structure of the mixed CaMoO4-CaWO4 upconversion materials. The effect of heat treatment at different temperatures on the emission spectra and XRD patterns has also been studied. TG-DTA was used to further confirm the most suitable temperature for heat treatment. The luminescence lifetimes and CIE coordinates for these samples were also determined. Additionally it was found that Gd(3+) co-doping could further increase the upconversion luminescence from these mixed CaMoO4-CaWO4 materials. Finally, monitoring the upconversion luminescence intensity as a function of laser pump power confirmed the upconversion process to be a two-photon absorption mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA