Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 31(6): 784-800, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518274

RESUMO

Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta-analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.


Assuntos
Adaptação Fisiológica/genética , Fenômenos Fisiológicos Vegetais/genética , Plantas/classificação , Altitude , Evolução Biológica
2.
Ambio ; 46(3): 277-290, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27804097

RESUMO

Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of 'Continental Europe'. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50-100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40-50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.


Assuntos
Biodiversidade , Mudança Climática , Modelos Teóricos , Animais , Aves , Borboletas , Europa (Continente) , Odonatos , Plantas , Áreas Alagadas
3.
Oecologia ; 163(3): 661-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20238128

RESUMO

Many studies have compared the growth of plants from native and invasive populations, but few have considered the role of ploidy. In its native range in North America, Solidago gigantea Aiton (Asteraceae) occurs as a diploid, tetraploid and hexaploid, with considerable habitat differentiation and geographic separation amongst these ploidy levels. In the introduced range in Europe, however, only tetraploid populations are known. We investigated the growth performance and life history characteristics of plants from 12 European and 24 North American (12 diploid, 12 tetraploid) populations in a common garden experiment involving two nutrient and two calcium treatments. Twelve plants per population were grown in pots for two seasons. We measured 24 traits related to leaf nutrients, plant size, biomass production and phenology as well as sexual and vegetative reproduction. Native diploid plants had a higher specific leaf area and higher leaf nutrient concentrations than native tetraploids, but tetraploids produced many more shoots and rhizomes. Diploids grown with additional calcium produced less biomass, whereas tetraploids were not affected. European plants were less likely to flower and produced smaller capitulescences than North American tetraploids, but biomass production and shoot and rhizome number did not differ. We conclude that a knowledge of ploidy level is essential in comparative studies of invasive and native populations. While clonal growth is important for the invasion success of tetraploid S. gigantea, its potential was not acquired by adaptation after introduction but by evolutionary processes in the native range.


Assuntos
Asteraceae/genética , Asteraceae/fisiologia , Evolução Biológica , Ecossistema , Ploidias , Asteraceae/crescimento & desenvolvimento , Cálcio/metabolismo , Diploide , Europa (Continente) , Variação Genética , Geografia , Nitrogênio/metabolismo , América do Norte , Fósforo/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Poliploidia , Solo/análise
4.
Mol Ecol ; 17(24): 5245-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18992004

RESUMO

Ploidy level is an important aspect of the genetic makeup of a plant, and can strongly influence ecological characteristics such as invasiveness. We used a phylogeographical approach to elucidate the history of polyploidization and colonization success of diploid and tetraploid Solidago gigantea Aiton (Asteraceae) within its native range in North America. We were also able to identify the probable source material of the haplotype lineages invasive in Europe and Asia, where only tetraploid plants occur. To do this, we sequenced 1275 bp of chloroplast intergenic spacer DNA in 268 individuals from 57 populations. In addition, we performed a crossing experiment, which supported the hypothesis that chloroplast inheritance in this species is maternal. The phylogeographical analysis showed a complex pattern of 20 haplotypes of diploid and tetraploid plants. In North America, we found significant differentiation among regions, private haplotypes, and isolation by distance. Ploidy levels were more differentiated in the northern regions than in the South. The haplotype network was shallow and included one tetraploid-only, star-shaped cluster of haplotypes that were particularly successful colonizers. Post-glacial migration of diploid S. gigantea occurred mainly northwards east of the Appalachian Mountains, and to a lesser degree also southward. Our data suggest that tetraploids have formed several times in North America. Haplotype number and diversity were lower in European populations than in the native range, and we found evidence that four haplotypes were introduced to Europe from two source areas, New England and the Southern Appalachian Mountains.


Assuntos
Filogenia , Poliploidia , Solidago/genética , Ásia , DNA de Cloroplastos/genética , DNA Intergênico/genética , Europa (Continente) , Evolução Molecular , Herança Extracromossômica , Variação Genética , Genética Populacional , Geografia , Haplótipos , América do Norte , Análise de Sequência de DNA
5.
Oikos ; 116(3): 461-472, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32367896

RESUMO

Environmental change is not likely to act on biodiversity in a random manner, but rather according to species traits that affect assembly processes, thus, having potentially serious consequences on ecological functions. We investigated the effects of anthropogenic land use on functional richness of local hoverfly communities of 24 agricultural landscapes across temperate Europe. A multivariate ordination separated seven functional groups based on resource use, niche characteristics and response type. Intensive land use reduced functional richness, but each functional group responded in a unique way. Species richness of generalist groups was nearly unaffected. Local habitat quality mainly affected specialist groups, while land use affected intermediate groups of rather common species. We infer that high species richness within functional groups alone is no guarantee for maintaining functional richness. Thus, it is not species richness per se that improves insurance of functional diversity against environmental pressures but the degree of dissimilarity within each functional group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA