Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Tissue Eng Part C Methods ; 30(5): 217-228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38562112

RESUMO

Functional regeneration of anisotropically aligned tissues such as ligaments, microvascular networks, myocardium, or skeletal muscle requires a temporal and spatial series of biochemical and biophysical cues to direct cell functions that promote native tissue regeneration. When these cues are lost during traumatic injuries such as volumetric muscle loss (VML), scar formation occurs, limiting the regenerative capacity of the tissue. Currently, autologous tissue transfer is the gold standard for treating injuries such as VML but can result in adverse outcomes including graft failure, donor site morbidity, and excessive scarring. Tissue-engineered scaffolds composed of biomaterials, cells, or both have been investigated to promote functional tissue regeneration but are still limited by inadequate tissue ingrowth. These scaffolds should provide precisely tuned topographies and stiffnesses using proregenerative materials to encourage tissue-specific functions such as myoblast orientation, followed by aligned myotube formation and recovery of functional contraction. In this study, we describe the design and characterization of novel porous fibrin scaffolds with anisotropic microarchitectural features that recapitulate the native tissue microenvironment and offer a promising approach for regeneration of aligned tissues. We used directional freeze-casting with varied fibrin concentrations and freezing temperatures to produce scaffolds with tunable degrees of anisotropy and strut widths. Nanoindentation analyses showed that the moduli of our fibrin scaffolds varied as a function of fibrin concentration and were consistent with native skeletal muscle tissue. Quantitative morphometric analyses of myoblast cytoskeletons on scaffold microarchitectures demonstrated enhanced cell alignment as a function of microarchitectural morphology. The ability to precisely control the anisotropic features of fibrin scaffolds promises to provide a powerful tool for directing aligned tissue ingrowth and enhance functional regeneration of tissues such as skeletal muscle.


Assuntos
Fibrina , Mioblastos , Alicerces Teciduais , Alicerces Teciduais/química , Fibrina/química , Fibrina/farmacologia , Anisotropia , Mioblastos/citologia , Animais , Porosidade , Engenharia Tecidual/métodos , Camundongos , Linhagem Celular
2.
Int J Cardiol ; 371: 21-27, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174818

RESUMO

BACKGROUND: A method using in vivo Cine IVUS and VH-IVUS data has been proposed to quantify material properties of coronary plaques. However, correlations between plaque morphological characteristics and mechanical properties have not been studied in vivo. METHOD: In vivo Cine IVUS and VH-IVUS data were acquired at 32 plaque cross-sections from 19 patients. Six morphological factors were extracted for each plaque. These samples were categorized into healthy vessel, fibrous plaque, lipid-rich plaque and calcified plaque for comparisons. Three-dimensional thin-slice models were constructed using VH-IVUS data to quantify in vivo plaque material properties following a finite element updating approach by matching Cine IVUS data. Effective Young's moduli were calculated to represent plaque stiffness for easy comparison. Spearman's rank correlation analysis was performed to identify correlations between plaque stiffness and morphological factor. Kruskal-Wallis test with Bonferroni correction was used to determine whether significant differences in plaque stiffness exist among four plaque groups. RESULT: Our results show that lumen circumference change has a significantly negative correlation with plaque stiffness (r = -0.7807, p = 0.0001). Plaque burden and calcification percent also had significant positive correlations with plaque stiffness (r = 0.5105, p < 0.0272 and r = 0.5312, p < 0.0193) respectively. Among the four categorized groups, calcified plaques had highest stiffness while healthy segments had the lowest. CONCLUSION: There is a close link between plaque morphological characteristics and mechanical properties in vivo. Plaque stiffness tends to be higher as coronary atherosclerosis advances, indicating the potential to assess plaque mechanical properties in vivo based on plaque compositions.


Assuntos
Calcinose , Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Ultrassonografia de Intervenção/métodos , Placa Aterosclerótica/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Fibrose , Angiografia Coronária/métodos
3.
Cells ; 13(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201249

RESUMO

Calcific aortic valve disease (CAVD) is the most common heart valve disease among aging populations. There are two reported pathways of CAVD: osteogenic and dystrophic, the latter being more prevalent. Current two-dimensional (2D) in vitro CAVD models have shed light on the disease but lack three-dimensional (3D) cell-ECM interactions, and current 3D models require osteogenic media to induce calcification. The goal of this work is to develop a 3D dystrophic calcification model. We hypothesize that, as with 2D cell-based CAVD models, programmed cell death (apoptosis) is integral to calcification. We model the cell aggregation observed in CAVD by creating porcine valvular interstitial cell spheroids in agarose microwells. Upon culture in complete growth media (DMEM with serum), calcium nodules form in the spheroids within a few days. Inhibiting apoptosis with Z-VAD significantly reduced calcification, indicating that the calcification observed in this model is dystrophic rather than osteogenic. To determine the relative roles of oxidative stress and extracellular matrix (ECM) production in the induction of apoptosis and subsequent calcification, the media was supplemented with antioxidants with differing effects on ECM formation (ascorbic acid (AA), Trolox, or Methionine). All three antioxidants significantly reduced calcification as measured by Von Kossa staining, with the percentages of calcification per area of AA, Trolox, Methionine, and the non-antioxidant-treated control on day 7 equaling 0.17%, 2.5%, 6.0%, and 7.7%, respectively. As ZVAD and AA almost entirely inhibit calcification, apoptosis does not appear to be caused by a lack of diffusion of oxygen and metabolites within the small spheroids. Further, the observation that AA treatment reduces calcification significantly more than the other antioxidants indicates that the ECM stimulatory effect of AA plays a role inhibiting apoptosis and calcification in the spheroids. We conclude that, in this 3D in vitro model, both oxidative stress and ECM production play crucial roles in dystrophic calcification and may be viable therapeutic targets for preventing CAVD.


Assuntos
Valvopatia Aórtica , Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Animais , Suínos , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose , Ácido Ascórbico , Metionina , Racemetionina
4.
Biomech Model Mechanobiol ; 21(5): 1357-1370, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829977

RESUMO

Many biological phenomena such as cell proliferation and death are correlated with stress fields within cells. Stress fields are quantified using computational methods which rely on fundamental assumptions about local mechanical properties. Most existing methods such as Monolayer Stress Microscopy assume isotropic properties, yet experimental observations strongly suggest anisotropy. We first model anisotropy in circular cells analytically using Eshelby's inclusion method. Our solution reveals that uniform anisotropy cannot exist in cells due to the occurrence of substantial stress concentration in the central region. A more realistic non-uniform anisotropy model is then introduced based on experimental observations and implemented numerically which interestingly clears out stress concentration. Stresses within the entire aggregate also drastically change compared to the isotropic case, resulting in better agreement with observed biomarkers. We provide a physics-based mechanism to explain the low alignment of stress fibers in the center of cells, which might explain certain biological phenomena e.g., existence of disrupted rounded cells, and higher apoptosis rate at the center of circular aggregates.


Assuntos
Fibras de Estresse , Anisotropia , Estresse Mecânico
5.
Front Physiol ; 12: 721195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759832

RESUMO

Introduction: Mechanical forces are closely associated with plaque progression and rupture. Precise quantifications of biomechanical conditions using in vivo image-based computational models depend heavily on the accurate estimation of patient-specific plaque mechanical properties. Currently, mechanical experiments are commonly performed on ex vivo cardiovascular tissues to determine plaque material properties. Patient-specific in vivo coronary material properties are scarce in the existing literature. Methods: In vivo Cine intravascular ultrasound and virtual histology intravascular ultrasound (IVUS) slices were acquired at 20 plaque sites from 13 patients. A three-dimensional thin-slice structure-only model was constructed for each slice to obtain patient-specific in vivo material parameter values following an iterative scheme. Effective Young's modulus (YM) was calculated to indicate plaque stiffness for easy comparison purposes. IVUS-based 3D thin-slice models using in vivo and ex vivo material properties were constructed to investigate their impacts on plaque wall stress/strain (PWS/PWSn) calculations. Results: The average YM values in the axial and circumferential directions for the 20 plaque slices were 599.5 and 1,042.8 kPa, respectively, 36.1% lower than those from published ex vivo data. The YM values in the circumferential direction of the softest and stiffest plaques were 103.4 and 2,317.3 kPa, respectively. The relative difference of mean PWSn on lumen using the in vivo and ex vivo material properties could be as high as 431%, while the relative difference of mean PWS was much lower, about 3.07% on average. Conclusion: There is a large inter-patient and intra-patient variability in the in vivo plaque material properties. In vivo material properties have a great impact on plaque stress/strain calculations. In vivo plaque material properties have a greater impact on strain calculations. Large-scale-patient studies are needed to further verify our findings.

6.
Front Bioeng Biotechnol ; 9: 638934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095094

RESUMO

Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late-onset right ventricle (RV) failure. Current surgery procedures, including pulmonary valve replacement (PVR) with right ventricle remodeling, yield mixed results. PVR with active band insertion was hypothesized to be of clinical usage on improving RV function measured by ejection fraction (EF). In lieu of risky open-heart surgeries and experiments on animal and human, computational biomechanical models were adapted to study the impact of PVR with five band insertion options. Cardiac magnetic resonance (CMR) images were acquired from seven TOF patients before PVR surgery for model construction. For each patient, five different surgery plans combined with passive and active contraction band with contraction ratio of 20, 15, and 10% were studied. Those five plans include three single-band plans with different band locations; one plan with two bands, and one plan with three bands. Including the seven no-band models, 147 computational bi-ventricle models were constructed to simulate RV cardiac functions and identify optimal band plans. Patient variations with different band plans were investigated. Surgery plan with three active contraction bands and band active contraction ratio of 20% had the best performance on improving RV function. The mean ± SD RV ejection fraction value from the seven patients was 42.90 ± 5.68%, presenting a 4.19% absolute improvement or a 10.82% relative improvement, when compared with the baseline models (38.71 ± 5.73%, p = 0.016). The EF improvements from the seven patients varied from 2.87 to 6.01%. Surgical procedures using active contraction bands have great potential to improve RV function measured by ejection fraction for patients with repaired ToF. It is possible to have higher right ventricle ejection fraction improvement with more bands and higher band active contraction ratio. Our findings with computational models need to be further validated by animal experiments before clinical trial could become possible.

7.
Ann Biomed Eng ; 49(1): 75-97, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169343

RESUMO

Apoptosis is a highly conserved physiological process of programmed cell death which is critical for proper organism development, tissue maintenance, and overall organism homeostasis. Proper regulation of cell removal is crucial, as both excessive and reduced apoptotic rates can lead to the onset of a variety of diseases. Apoptosis can be induced in cells in response to biochemical, electrical, and mechanical stimuli. Here, we review literature on specific mechanical stimuli that regulate apoptosis and the current understanding of how mechanotransduction plays a role in apoptotic signaling. We focus on how insufficient or excessive mechanical forces may induce apoptosis in the cardiovascular system and thus contribute to cardiovascular disease. Although studies have demonstrated that a broad range of mechanical stimuli initiate and/or potentiate apoptosis, they are predominantly correlative, and no mechanisms have been established. In this review, we attempt to establish a unifying mechanism for how various mechanical stimuli initiate a single cellular response, i.e. apoptosis. We hypothesize that the cytoskeleton plays a central role in this process as it does in determining myriad cell behaviors in response to mechanical inputs. We also describe potential approaches of using mechanomedicines to treat various diseases by altering apoptotic rates in specific cells. The goal of this review is to summarize the current state of the mechanobiology field and suggest potential avenues where future research can explore.


Assuntos
Apoptose , Doenças Cardiovasculares , Animais , Doenças Cardiovasculares/terapia , Sistema Cardiovascular , Humanos , Fenômenos Mecânicos
8.
Comput Methods Biomech Biomed Engin ; 23(15): 1267-1276, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32696674

RESUMO

Plaque vulnerability prediction is of great importance in cardiovascular research. In vivo follow-up intravascular ultrasound (IVUS) coronary plaque data were acquired from nine patients to construct fluid-structure interaction models to obtain plaque biomechanical conditions. Morphological plaque vulnerability index (MPVI) was defined to measure plaque vulnerability. The generalized linear mixed regression model (GLMM), support vector machine (SVM) and random forest (RF) were introduced to predict MPVI change (ΔMPVI = MPVIfollow-up‒MPVIbaseline) using ten risk factors at baseline. The combination of mean wall thickness, lumen area, plaque area, critical plaque wall stress, and MPVI was the best predictor using RF with the highest prediction accuracy 91.47%, compared to 90.78% from SVM, and 85.56% from GLMM. Machine learning method (RF) improved the prediction accuracy by 5.91% over that from GLMM. MPVI was the best single risk factor using both GLMM (82.09%) and RF (78.53%) while plaque area was the best using SVM (81.29%).


Assuntos
Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Aprendizado de Máquina , Modelos Cardiovasculares , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Ultrassonografia , Área Sob a Curva , Fenômenos Biomecânicos , Angiografia Coronária , Feminino , Humanos , Imageamento Tridimensional , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/fisiopatologia , Curva ROC , Fatores de Risco , Máquina de Vetores de Suporte , Ultrassonografia de Intervenção/métodos
9.
Front Physiol ; 11: 198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265727

RESUMO

INTRODUCTION: Right ventricle (RV) failure is one of the most common symptoms among patients with repaired tetralogy of Fallot (TOF). The current surgery treatment approach including pulmonary valve replacement (PVR) showed mixed post-surgery outcomes. A novel PVR surgical strategy using active contracting bands is proposed to improve the post-PVR outcome. In lieu of testing the risky surgical procedures on real patients, computational simulations (virtual surgery) using biomechanical ventricle models based on patient-specific cardiac magnetic resonance (CMR) data were performed to test the feasibility of the PVR procedures with active contracting bands. Different band combination and insertion options were tested to identify optimal surgery designs. METHOD: Cardiac magnetic resonance data were obtained from one TOF patient (male, age 23) whose informed consent was obtained. A total of 21 finite element models were constructed and solved following our established procedures to investigate the outcomes of the band insertion surgery. The non-linear anisotropic Mooney-Rivlin model was used as the material model. Five different band insertion plans were simulated (three single band models with different band locations, one model with two bands, and one model with three bands). Three band contraction ratios (10, 15, and 20%) and passive bands (0% contraction ratio) were tested. RV ejection fraction was used as the measure for cardiac function. RESULTS: The RV ejection fraction from the three-band model with 20% contraction increased to 41.58% from the baseline of 37.38%, a 4.20% absolute improvement. The RV ejection fractions from the other four band models with 20% contraction rate were 39.70, 39.45, and 40.70% (two-band) and 39.17%, respectively. The mean RV stress and strain values from all of the 21 models showed only modest differences (5-11%). CONCLUSION: This pilot study demonstrated that the three-band model with 20% band contraction ratio led to 4.20% absolute improvement in the RV ejection fraction, which is considered as clinically significant. The passive elastic bands led to the reduction of the RV ejection fractions. The modeling results and surgical strategy need to be further developed and validated by a multi-patient study and animal experiments before clinical trial could become possible. Tissue regeneration techniques are needed to produce materials for the contracting bands.

10.
Biophys J ; 118(1): 15-25, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31812354

RESUMO

Stress fields emerging from the transfer of forces between cells within multicellular systems are increasingly being recognized as major determinants of cell fate. Current analytical and numerical models used for the calculation of stresses within cell monolayers assume homogeneous contractile and mechanical cellular properties; however, cell behavior varies by region within constrained tissues. Here, we show the impact of heterogeneous cell properties on resulting stress fields that guide cell phenotype and apoptosis. Using circular micropatterns, we measured biophysical metrics associated with cell mechanical stresses. We then computed cell-layer stress distributions using finite element contraction models and monolayer stress microscopy. In agreement with previous studies, cell spread area, alignment, and traction forces increase, whereas apoptotic activity decreases, from the center of cell layers to the edge. The distribution of these metrics clearly indicates low cell stress in central regions and high cell stress at the periphery of the patterns. However, the opposite trend is predicted by computational models when homogeneous contractile and mechanical properties are assumed. In our model, utilizing heterogeneous cell-layer contractility and elastic moduli values based on experimentally measured biophysical parameters, we calculate low cell stress in central areas and high anisotropic stresses in peripheral regions, consistent with the biometrics. These results clearly demonstrate that common assumptions of uniformity in cell contractility and stiffness break down in postconfluence confined multicellular systems. This work highlights the importance of incorporating regional variations in cell mechanical properties when estimating emergent stress fields from collective cell behavior.


Assuntos
Modelos Biológicos , Estresse Mecânico , Fenômenos Biomecânicos , Linhagem Celular , Sobrevivência Celular
12.
PLoS One ; 14(8): e0220328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412062

RESUMO

Patient-specific in vivo ventricle mechanical wall stress and strain conditions are important for cardiovascular investigations and should be calculated from correct zero-load ventricle morphologies. Cardiac magnetic resonance (CMR) data were obtained from 6 healthy volunteers and 12 Tetralogy of Fallot (TOF) patients with consent obtained. 3D patient-specific CMR-based ventricle models with different zero-load diastole and systole geometries due to myocardium contraction and relaxation were constructed to qualify right ventricle (RV) diastole and systole stress and strain values at begin-filling, end-filling, begin-ejection, and end-ejection, respectively. Our new models (called 2G models) can provide end-diastole and end-systole stress/strain values which models with one zero-load geometries (called 1G models) could not provide. 2G mean end-ejection stress value from the 18 participants was 321.4% higher than that from 1G models (p = 0.0002). 2G mean strain values was 230% higher than that of 1G models (p = 0.0002). TOF group (TG) end-ejection mean stress value was 105.4% higher than that of healthy group (HG) (17.54±7.42kPa vs. 8.54±0.92kPa, p = 0.0245). Worse outcome group (WG, n = 6) post pulmonary valve replacement (PVR) begin-ejection mean stress was 57.4% higher than that of better outcome group (BG, 86.94±26.29 vs. 52.93±22.86 kPa; p = 0.041). Among 7 selected parameters, End-filling stress was the best predictor to differentiate BG patients from WG patients with prediction accuracy = 0.8208 and area under receiver operating characteristic curve (AUC) value at 0.8135 (EE stress). Large scale studies are needed to further validate our findings.


Assuntos
Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares , Estresse Mecânico , Tetralogia de Fallot/fisiopatologia , Adolescente , Adulto , Criança , Diástole/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sístole/fisiologia , Adulto Jovem
13.
Int J Cardiol ; 293: 266-271, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31301863

RESUMO

Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis, prevention, and treatment. Magnetic resonance image (MRI) data of carotid atherosclerotic plaques were acquired from 20 patients with consent obtained. 3D thin-layer models were constructed to calculate plaque stress and strain. Data for ten morphological and biomechanical risk factors were extracted for analysis. Wall thickness increase (WTI), plaque burden increase (PBI) and plaque area increase (PAI) were chosen as three measures for plaque progression. Generalized linear mixed models (GLMM) with 5-fold cross-validation strategy were used to calculate prediction accuracy and identify optimal predictor. The optimal predictor for PBI was the combination of lumen area (LA), plaque area (PA), lipid percent (LP), wall thickness (WT), maximum plaque wall stress (MPWS) and maximum plaque wall strain (MPWSn) with prediction accuracy = 1.4146 (area under the receiver operating characteristic curve (AUC) value is 0.7158), while PA, plaque burden (PB), WT, LP, minimum cap thickness, MPWS and MPWSn was the best for WTI (accuracy = 1.3140, AUC = 0.6552), and a combination of PA, PB, WT, MPWS, MPWSn and average plaque wall strain (APWSn) was the best for PAI with prediction accuracy = 1.3025 (AUC = 0.6657). The combinational predictors improved prediction accuracy by 9.95%, 4.01% and 1.96% over the best single predictors for PAI, PBI and WTI (AUC values improved by 9.78%, 9.45%, and 2.14%), respectively. This suggests that combining both morphological and biomechanical risk factors could lead to better patient screening strategies.


Assuntos
Doenças das Artérias Carótidas/diagnóstico , Imageamento por Ressonância Magnética/métodos , Placa Aterosclerótica , Idoso , Fenômenos Biomecânicos , Progressão da Doença , Feminino , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Modelos Cardiovasculares , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Medição de Risco
14.
Int J Cardiol ; 276: 93-99, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217422

RESUMO

Patient-specific in vivo ventricle material parameter determination is important for cardiovascular investigations. A new cardiac magnetic image (CMR)-based modeling approach with different zero-load diastole and systole geometries was adopted to estimate right ventricle material parameter values for healthy and patients with Tetralogy of Fallot (TOF) and seeking potential clinical applications. CMR data were obtained from 6 healthy volunteers and 16 TOF patients with consent obtained. CMR-based RV/LV models were constructed using two zero-load geometries (diastole and systole, 2G model). Material parameter values for begin-filling (BF), end-filling (EF), begin-ejection (BE), and end-ejection (EE) were recorded for analyses. Effective Young's moduli (YM) for fiber direction stress-strain curves were calculated for easy comparisons. The mean EE YM value of TOF patients was 78.6% higher than that of the healthy group (HG). The mean end-ejection YM value from worse-outcome TOF group (WG) post pulmonary valve replacement (PVR) surgery was 59.5% higher than that from the better-outcome TOF group (BG). Using begin-filling YM and end-ejection YM as predictors and the classic logistic regression model to different better-outcome group patients from worse-outcome group patients, the areas under Receiver Operating Characteristic (ROC) curves were found to be 0.797 and 0.883 for begin-filling YM and end-ejection YM, respectively. The sensitivity and specificity 0.761 and 0.755 using end-ejection YM as the predictor. This preliminary study suggests that ventricle material stiffness could be a potential parameter to be used to differentiate BG patients from WG patients with further effort and large-scale patient data validations.


Assuntos
Pressão Sanguínea/fisiologia , Modelos Cardiovasculares , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/fisiopatologia , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia , Adolescente , Adulto , Criança , Diástole/fisiologia , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Sístole/fisiologia , Função Ventricular Direita/fisiologia , Adulto Jovem
15.
J Biomech ; 68: 43-50, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29274686

RESUMO

Plaque morphology and biomechanics are believed to be closely associated with plaque progression. In this paper, we test the hypothesis that integrating morphological and biomechanical risk factors would result in better predictive power for plaque progression prediction. A sample size of 374 intravascular ultrasound (IVUS) slices was obtained from 9 patients with IVUS follow-up data. 3D fluid-structure interaction models were constructed to obtain both structural stress/strain and fluid biomechanical conditions. Data for eight morphological and biomechanical risk factors were extracted for each slice. Plaque area increase (PAI) and wall thickness increase (WTI) were chosen as two measures for plaque progression. Progression measure and risk factors were fed to generalized linear mixed models and linear mixed-effect models to perform prediction and correlation analysis, respectively. All combinations of eight risk factors were exhausted to identify the optimal predictor(s) with highest prediction accuracy defined as sum of sensitivity and specificity. When using a single risk factor, plaque wall stress (PWS) at baseline was the best predictor for plaque progression (PAI and WTI). The optimal predictor among all possible combinations for PAI was PWS + PWSn + Lipid percent + Min cap thickness + Plaque Area (PA) + Plaque Burden (PB) (prediction accuracy = 1.5928) while Wall Thickness (WT) + Plaque Wall Strain (PWSn) + Plaque Area (PA) was the best for WTI (1.2589). This indicated that PAI was a more predictable measure than WTI. The combination including both morphological and biomechanical parameters had improved prediction accuracy, compared to predictions using only morphological features.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Progressão da Doença , Fenômenos Mecânicos , Modelos Biológicos , Modelagem Computacional Específica para o Paciente , Placa Aterosclerótica/diagnóstico por imagem , Fenômenos Biomecânicos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estresse Mecânico , Ultrassonografia
16.
Int Urogynecol J ; 29(7): 979-985, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28634623

RESUMO

INTRODUCTION AND HYPOTHESIS: Surgeons use a variety of sutures and knot-tying methods during pelvic reconstructive procedures. We hypothesized that knot-strength integrity will be similar with regards to type of knot, type of suture, and the knot-tying process. METHODS: Using six different suture materials, flat square knots and slip knots were tied robotically and by hand by two surgeons. Knot integrity was evaluated using an Instron 5544 machine. We measured force and elongation at suture failure or knot slippage (whichever came first) as well as force at 3-mm displacement. RESULTS: Four hundred and thirty-two knots were tie; one unraveled before the analysis, and 431 were tested. Three hundred and ninety-two knots reached or surpassed tensile strength of 30 N, the force at which tissue itself will fail. Knots tied with polyglyconate suture achieved the greatest tensile strength and those with OO-polydioxanone had the lowest. Hand-tied knots, regardless of technique and suture material, had greater tensile strength but greater elongation than robotically tied knots. Slip knots and flat square knots have similar integrity regardless of the tying technique. CONCLUSION: Hand-tied knots had greater tensile strength than robotic knots, but the strength to break all knots required supraphysiological conditions. The decision to use a specific type of suture based on strength is not supported by our results, suggesting that surgeons may choose sutures based on other characteristics and personal comfort.


Assuntos
Diafragma da Pelve/cirurgia , Técnicas de Sutura , Suturas , Feminino , Humanos , Teste de Materiais , Resistência à Tração
17.
J Biomech Eng ; 139(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28857112

RESUMO

Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.


Assuntos
Túnica Adventícia/patologia , Túnica Adventícia/fisiopatologia , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Rigidez Vascular , Idoso , Idoso de 80 Anos ou mais , Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico
18.
PLoS One ; 12(7): e0180829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715441

RESUMO

BACKGROUND: Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. METHODS: In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young's Modulus (YM) values were calculated for comparison and analysis. RESULTS: Average Effective Young's Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). CONCLUSION: In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Placa Aterosclerótica/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/fisiopatologia , Módulo de Elasticidade , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade
19.
J Biomech Eng ; 139(7)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28494057
20.
Lab Chip ; 17(5): 814-829, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28128382

RESUMO

Calcific aortic valvular disease (CAVD) is the most prevalent valvular pathology in the United States. Development of a pharmacologic agent to slow, halt, or reverse calcification has proven to be unsuccessful as still much remains unknown about the mechanisms of disease initiation. Although in vitro models of some features of CAVD exist, their utility is limited by the inconsistency of the size and time course of the calcified cell aggregates. In this study, we introduce and verify a highly reproducible in vitro method for studying dystrophic calcification of cardiac valvular interstitial cells, considered to be a key mechanism of clinical CAVD. By utilizing micro-contact printing, we were able to consistently reproduce cell aggregation, myofibroblastic markers, programmed cell death, and calcium accumulation within aggregates of 50-400 µm in diameter on substrates with moduli from 9.6 to 76.8 kPa. This method is highly repeatable, with 70% of aggregates staining positive for Alizarin Red S after one week in culture. Dense mineralized calcium-positive nanoparticles were found within the valvular interstitial cell aggregates as shown by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The area of micro-contact printed aggregates staining positive for caspase 3/7 activity increased from 5.9 ± 0.9% to 12.6 ± 4.5% over one week in culture. Z-VAD-FMK reduced aggregates staining positive for Alizarin Red S by 60%. The state of cell stress is hypothesized to play a role in the disease progression; traction force microscopy indicates high substrate stresses along the aggregate periphery which can be modulated by altering the size of the aggregates and the modulus of the substrate. Micro-contact printing is advantageous over the currently used in vitro model as it allows the independent study of how cytokines, substrate modulus, and pharmacologic agents affect calcification. This controlled method for aggregate creation has the potential to be used as an in vitro assay for the screening of promising therapeutics to mitigate CAVD.


Assuntos
Valva Aórtica , Calcinose/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Modelos Cardiovasculares , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Fenômenos Biomecânicos , Bioimpressão , Células Cultivadas , Reprodutibilidade dos Testes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA